Answer:
[HI] = 0.264M
Explanation:
Based on the equilibrium:
2HI(g) ⇄ H₂(g) + I₂(g)
It is possible to define Kc of the reaction as the ratio between concentration of products and reactants using coefficients of each compound, thus:
<em>Kc = 0.0156 = [H₂] [I₂] / [HI]²</em>
<em />
As initial concentration of HI is 0.660mol / 2.00L = <em>0.330M, </em>the equlibrium concentrations will be:
[HI] = 0.330M - 2X
[H₂] = X
[I₂] = X
<em>Where X is reaction coefficient.</em>
<em />
Replacing in Kc:
0.0156 = [X] [X] / [0.330M - 2X]²
0.0156 = X² / [0.1089 - 1.32X + 4X²
]
0.00169884 - 0.020592 X + 0.0624 X² = X²
0.00169884 - 0.020592 X - 0.9376 X² = 0
Solving for X:
X = - 0.055 → False solution, there is no negative concentrations
X = 0.0330 → Right solution.
Replacing in HI formula:
[HI] = 0.330M - 2×0.033M
<h3>[HI] = 0.264M</h3>
I think answer should be b. Please give me brainlest I hope this helps let me know if it’s correct or not okay thanks
Answer:
i believe its precipitation??
Explanation:
Answer:
Hence, 15.99 g of solid Aluminum Sulfate should be added in 250 mL of Volumetric flask.
Explanation:
To make 0.187 M of Aluminum Sulfate solution in a 250 mL (0.250 L) Volumetric flask
The molar mass of Aluminum Sulfate = 342.15 g/mol
Using the molarity formula:-
Molarity = Number of moles/Volume of solution in a liter
Number of moles = Given weight/ molar mass
Molarity = (Given weight/ molar mass)/Volume of solution in liter
0.187 M = (Given weight/342.15 g/mol)/0.250 L
Given weight = 15.99 g
An early model of the atom was developed in 1913 by Danish scientist Niels Bohr (1885–1962). The Bohr model shows the atom as a central nucleus containing protons and neutrons with the electrons in circular orbitals at specific distances from the nucleus . These orbits form electron shells or energy levels, which are a way of visualizing the number of electrons in the various shells. These energy levels are designated by a number and the symbol "n." For example, 1n represents the first energy level located closest to the nucleus.