Answer:
See explanation and image attached for details
Explanation:
The reaction involves the heterolytic fission of the Br-Br bond in the bromine molecule to yield a bromine cation which attacks the but-1-ene to form a cyclic intermediate called the brominium ion. The bromine anion must now attack from the opposite face of the brominium ion due to steric clashes to form a product of a 1,2-dibromoalkane having the anti- stereochemistry.
Answer:
12.8 g of
must be withdrawn from tank
Explanation:
Let's assume
gas inside tank behaves ideally.
According to ideal gas equation- 
where P is pressure of
, V is volume of
, n is number of moles of
, R is gas constant and T is temperature in kelvin scale.
We can also write, 
Here V, T and R are constants.
So,
ratio will also be constant before and after removal of
from tank
Hence, 
Here,
and 
So, 
So, moles of
must be withdrawn = (0.66 - 0.26) mol = 0.40 mol
Molar mass of
= 32 g/mol
So, mass of
must be withdrawn = 
A water molecule consists of three atoms; an oxygen atom and two hydrogen atoms, which are bond together like little magnets.
An iron pot is made up of only one substance, iron. Iron is an element classified as a transition metal
Iron. Elementsare pure substances that are made up of one kind of atom. Pizza is not an element because it is a mixture of many substances. Water is a pure substance, but it contains two kindsof atom: oxygen and hydrogen.
Answer:
2.99 M
Explanation:
In order to solve this problem we need to keep in mind the definition of molarity:
- Molarity = moles of solute / liters of solution
In order to calculate the moles of solute, we <u>convert 125.6 g of NaF into moles</u> using its <em>molar mass</em>:
- 125.6 g NaF ÷ 42 g/mol = 2.99 mol NaF
As the volume is already given, we can proceed to <em>calculate the molarity</em>:
- Molarity = 2.99 mol / 1.00 L = 2.99 M