When an object is falling and reaches a constant velocity, the net force on the object is <em>zero</em> (it's not accelerating), and the weight of the object is equal to <em>the force of air resistance against the object</em>. (choice-D)
Answer:
- 3 cm
Explanation:
From the mirror formula;
1/f = 1/v + 1/u ; where f is the focal length, v is the image distance, and u is the object distance.
1/-4.5 = 1/9 + 1/v
1/v = -1/4.5 - 1/9
= -1/3
Therefore;
v = -3 cm
Hence;
Image distance is - 3cm
Compression and rarefraction, the other guy's answer it's wrong
perimeter of a rectangle = 2(L+B)
90=2(L+B)
90/2=L+B
45=L+B
Answer:
A) R = (200 i ^ + 100 j ^ + 30k ^) m
, B) L = 223.61 m
, C) R = 225.61 m
Explanation:
Part A
This is a vector summing exercise, let's take a Reference System where the z axis corresponds to the height (flights), the x axis is the East - West and the y axis corresponds to the North - South.
Let's write the displacements
Descending from the apartment
10 flights of 3 m each, the total descent is 30 m
Z = 30 k ^ m
Offset at street level
L1 = 0.2 i ^ km
L2 = 0.1 j ^ km
Let's reduce everything to the SI system
L1 = 0.2 * 1000 = 200 i ^ m
L2 = 100 j ^ m
The distance traveled is
R = (200 i ^ + 100 j ^ + 30k ^) m
Part B
The horizontal distance traveled can be found with the Pythagorean theorem for the coordinates in the plane
L² = x² + y²
L = √ (200² + 100²)
L = 223.61 m
Part C
The magnitude of travel, let's use the Pythagorean theorem for the sum
R² = x² + y² + z²
R = √ (30² + 200² + 100²)
R = 225.61 m