It has been hypothesized, and some studies have supported the conjecture,
that certain species of insects and birds are able to sense the direction of external
magnetic fields.
I don't think there is any such notion where human beings are concerned.
Answer:
Zero
Explanation:
As force acting on the body is equal to the product of mass and acceleration.
Acceleration is equal to rate of change in velocity.
Here velocity is constant so acceleration is zero.
It means the net force acting on the vehicle is zero.
Answer:
Change in momentum will be -4.4 kgm/sec
So option (A) is correct option
Explanation:
Mass of the ball is given m = 0.10 kg
Initial velocity of ball 
And velocity after rebound 
We have to find the change in momentum
So change in momentum is equal to
( here negative sign shows only direction )
So option (A) will be correct answer
Answer:
8.00 kJ
Explanation:
The first thing is to determine what quantities are there.
the mass of water = 1 000 kg
initial velocity, u = 6 m/s
final velocity, v = 4 m/s
the generator is operating at 100 % efficiency, so there is no energy loss.
The kinetic energy, Ek is converted to electrical energy, therefore Ek = electrical energy.
The kinetic energy is calculated as follows:
Ek = 1/2 mv²
= 1/2×(1 000)× (4)²
= 8 000 J/s
= 8.00 kJ Ans
The correct answer is 1.07m.
The area surrounding an electric charge where its impact may be felt is known as the electric field. When another charge enters the field, the presence of an electric field may be felt. The electric field will either attract or repel the charge depending on its makeup. Any electric charge has a property known as the electric field. The charge and electrical force working in the field determine the strength or intensity of the electric field.
Here, is the charge per unit length, r is the distance from the wire, and
is the free space permittivity ε_0. Electric field due to the long straight wire is,
E= λ/2πε_0r
Rearrange the equation for r.
r=λ/2πε_0E
Substitute 2.41 N/C for E,
E=1.44×10^-10C/m
λ=8.85×10^-12C^2/Nm^2
r=(1.44×10^-10C/m)/(2(3.14)(8.85×10^-12C^2/Nm^2)(2.41N/C))
r=1.07m
At a distance of 1.07 m the magnitude of electric field is 2.41 N/C.
To learn more about electric field refer the link:
brainly.com/question/12821750
#SPJ4