1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Soloha48 [4]
3 years ago
9

How would you decide what numeric scale to use for each axis?

Physics
1 answer:
faltersainse [42]3 years ago
7 0
Look at at highest number for each x and y value given
You might be interested in
A ball of 0.5kg slows down from 5m/s to 3m/s. Calculate the work done inthe process.
dlinn [17]

Answer:

9.8 Joules (rounded to 2 significant figures)

Explanation:

Work done (J)= Force(N) x distance changed (m)

  • Force= 9.80665 x 0.5kg
  • Force= 4.90332 Newtons

  • Distance changed= 5-3
  • distance changed= 2m/s

--> work done= 4.90332 x 2

work done= 9.8 Joules

5 0
2 years ago
Light waves
irga5000 [103]

Answer:

a

Explanation:

Because I searched it up

7 0
3 years ago
Read 2 more answers
How many hydrogen and carbon atoms in a diamond
Wewaii [24]

Answer:

Explanation:

Thus, total 4+4=8 C atoms are present per unit cell of diamond. Carbon has an electronic arrangement of 2,4. In diamond, each carbon shares electrons with four other carbon atoms - forming four single bonds.

4 0
3 years ago
Kevin goes bowling. Whenever he bowls the ball, he transfers energy from his hand to the bowling ball. The amount of energy befo
g100num [7]

Answer:the answer is C

Explanation:

3 0
3 years ago
To test the performance of its tires, a car
velikii [3]

<u>Answer</u>:

The coefficient of  static friction between the tires and the road is 1.987

<u>Explanation</u>:

<u>Given</u>:

Radius of the track, r =  516 m

Tangential Acceleration a_r=  3.89 m/s^2

Speed,v =  32.8 m/s

<u>To Find:</u>

The coefficient of  static friction between the tires and the road = ?

<u>Solution</u>:

The radial Acceleration is given by,

a_{R = \frac{v^2}{r}

a_{R = \frac{(32.8)^2}{516}

a_{R = \frac{(1075.84)}{516}

a_{R = 2.085 m/s^2

Now the total acceleration is

\text{ total acceleration} = \sqrt{\text{(tangential acceleration)}^2 +{\text{(Radial acceleration)}^2

=>= \sqrt{ (a_r)^2+(a_R)^2}

=>\sqrt{ (3.89 )^2+( 2.085)^2}

=>\sqrt{ (15.1321)+(4.347)^2}

=>19.4791 m/s^2

The frictional force on the car will be f = ma------------(1)

And the force due to gravity is W = mg--------------------(2)

Now the coefficient of  static friction is

\mu =\frac{f}{W}

From (1) and (2)

\mu =\frac{ma}{mg}

\mu =\frac{a}{g}

Substituting the values, we get

\mu =\frac{19.4791}{9.8}

\mu =1.987

8 0
3 years ago
Other questions:
  • A ball is thrown straight upward and rises to a maximum height of 18.0 m above its launch point. at what height above its launch
    9·1 answer
  • A shell is fired from the ground with an initial speed of 1.51 ✕ 10^3 m/s at an initial angle of 32° to the horizontal. (a) Negl
    12·2 answers
  • Describe 3 ways a bicyclist can change velocity.
    14·2 answers
  • Acceleration is the change of
    7·1 answer
  • A woman on a motorcycle moving uniformly at a rate of 20 m/s passes a truck at rest. At the instant the motorcycle passes the tr
    13·1 answer
  • The speed of sound in an ideal gas is given by the relationship v = γRTM−−−−√ , where R - the universal gas constant = 8.314 J/m
    12·1 answer
  • Which equation represents the total energy of a system
    6·1 answer
  • How many seasons are there in a year
    8·2 answers
  • A man with a mass of 60 kg rides a bike with a mass of 13 kg. What is the force needed to accelerate the bike at 0.90 m/s2?
    11·1 answer
  • A rocket is traveling toward the earth at 12c when it ejects a missile forward at 12c relative to the rocket.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!