A triple beam balance is used to measure mass
Strength, the capacity of the invi elements
Im pretty sure it would be d.
Answer:
28.7664 kJ /mol
Explanation:
The expression for Clausius-Clapeyron Equation is shown below as:

Where,
P is the vapor pressure
ΔHvap is the Enthalpy of Vaporization
R is the gas constant (8.314×10⁻³ kJ /mol K)
c is the constant.
The graph of ln P and 1/T gives a slope of - ΔHvap/ R and intercept of c.
Given :
Slope = -3.46×10³ K
So,
- ΔHvap/ R = -3.46×10³ K
<u>ΔHvap = 3.46×10³ K × 8.314×10⁻³ kJ /mol K = 28.7664 kJ /mol</u>
<u></u>
Answer is: 1160 J of heat Is required to increase the temperature.
m(Fe) = 100 g.
∆T = 40,2 - 15 = 25,2°C.
C(Fe) = 0,46 J/g•°C.
Q = m(Fe) • C • ∆T.
Q = 100 g • 0,46 J/g•°C • 25,2°C
Q = 1160 J.
C - specific heat.