Answer:
Noble gases are nonreactive, nonmetallic elements in group 18 of the periodic table. Noble gases are the least reactive of all elements. That's because they have eight valence electrons, which fill their outer energy level.
Elements: Argon
Answer:
3.81 g Pb
Explanation:
When a lead acid car battery is recharged, the following half-reactions take place:
Cathode: PbSO₄(s) + H⁺ (aq) + 2e⁻ → Pb(s) + HSO₄⁻(aq)
Anode: PbSO₄(s) + 2 H₂O(l) → PbO₂(s) + HSO₄⁻(aq) + 3H⁺ (aq) + 2e⁻
We can establish the following relations:
- 1 A = 1 c/s
- 1 mole of Pb(s) is deposited when 2 moles of e⁻ circulate.
- The molar mass of Pb is 207.2 g/mol
- 1 mol of e⁻ has a charge of 96468 c (Faraday's constant)
Suppose a current of 96.0A is fed into a car battery for 37.0 seconds. The mass of lead deposited is:

Answer:
The answer to your question is: letter B
Explanation:
Reaction
Cr2O3(s) + 3CCl4(l) ⇒ 2CrCl3(s) + 3COCl2(g)
From the information given and the reaction, we can conclude that:
Green solid = Cr2O3 (s) "s" means solid
Colorless liquid = CCl4 (l) "l" means liquid and is the other reactant
Purple solid = CrCl3(s) CrCl3 is purple and "s" solid
Then, as a green specks remains it means that the excess reactant is Cr2O3, so, CCl4 is the limiting reactant.
<h2>
Hello!</h2>
The answer is:
The percent yield of the reaction is 32.45%
<h2>
Why?</h2>
To calculate the percent yield, we have to consider the theoretical yield and the actual yield. The theoretical yield as its name says is the yield expected, however, many times the difference between the theoretical yield and the actual yield is notorious.
We are given that:

Now, to calculate the percent yield, we need to divide the actual yield by the theoretical and multiply it by 100.
So, calculating we have:

Hence, we have that the percent yield of the reaction is 32.45%.
Have a nice day!