Answer:
if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
Explanation:
The air in the tube can be considered an ideal gas,
P V = nR T
In that case we have the tube in the air where the pressure is P1 = P_atm, then we introduce the tube to the water to a depth H
For pressure the open end of the tube is
P₂ = P_atm + ρ g H
Let's write the gas equation for the colon
P₁ V₁ = P₂ V₂
P_atm V₁ = (P_atm + ρ g H) V₂
V₂ = V₁ P_atm / (P_atm + ρ g h)
If the air obeys Boyle's law e; volume within the had must decrease due to the increase in pressure, if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
The main assumption is that the temperature during the experiment does not change
Answer:
To determine the mystery component we will connect the mystery component to a DC voltage source, then I will measure the resistance of the component with the use of Ohmmeter, the value of the resistance of the mystery component will determine what the mystery component is
if the resistance > 1( very high ) then component is a capacitor
if the resistance = 0 then component is an inductor
Explanation:
To determine the mystery component we will connect the mystery component to a DC voltage source, then I will measure the resistance of the component with the use of Ohmmeter, the value of the resistance of the mystery component will determine what the mystery component is
if the resistance > 1( very high ) then component is a capacitor
if the resistance = 0 then component is an inductor
The charge on each the balloon is 100nC or 1.2 × 10^-7 C
Consider two balloons of diameter 0.200m each with a mass of 1.00g hanging apart with 0.0500m separation on the ends of string making angles of 10.0° with the vertical.
The charge on each balloon can be found from

or 100nC
An electric charge is the property of matter where it has more or fewer electrons than protons in its atoms. Electrons carry a negative charge and protons carry a positive charge. The matter is positively charged if it contains more protons than electrons and negatively charged if it contains more electrons than protons.
Learn more about the charge here:
brainly.com/question/14713274
#SPJ4