Answer:
121 Joules
6.16717 m
Explanation:
m = Mass of the rocket = 2 kg
k = Spring constant = 800 N/m
x = Compression of spring = 0.55 m
Here, the kinetic energy of the spring and rocket will balance each other

The initial velocity of the rocket is 11 m/s = u.
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s² = g

The maximum height of the rocket will be 6.16717 m
Potential energy is given by

The potential energy of the rocket at the maximum height will be 121 Joules
Answer:
a) ΔL/L = F / (E A), b)
= L (1 + L F /(EA) )
Explanation:
Let's write the formula for Young's module
E = P / (ΔL / L)
Let's rewrite the formula, to have the pressure alone
P = E ΔL / L
The pressure is defined as
P = F / A
Let's replace
F / A = E ΔL / L
F = E A ΔL / L
ΔL / L = F / (E A)
b) To calculate the elongation we must have the variation of the length, so the length of the bar must be a fact. Let's clear
ΔL = L [F / EA]
-L = L (F / EA)
= L + L (F / EA)
= L (1 + L (F / EA))
Answer:
it's d
Explanation:
have you ever baked a cake? Everytime you put cake batter into the oven, it takes a few hours for it to start turning into cake.
diameter of earth in miles= 7928 miles
1 mile = 1.609 km
diameter of earth in km= 7928*1.609
=12,756.152 km
Hope it helped u, pls thank if u find this helpful
and don't forget to put this answer as the brainliest.
^_^.
Answer:
Explanation:
For parallel inductors ,



For series combination
Total inductance
= 16.67 + 20
= 36.67 mH .
reactance of total inductance at 300 kHz
= ω
where ω is angular frequency
= 2πf
= 2 x 3.14 x 300 x 10³ x 36.67 x 10⁻³
= 69.1 x 10³ ohm
Total rms current = Vrms / reactance
= 60 / 69.1 x 10³ A
= .87 x 10⁻³ A
= .87 mA