Explanation:
It is given that,
The volume of a right circular cylindrical, 
We know that the volume of the cylinder is given by :

............(1)
The upper area is given by :



For maximum area, differentiate above equation wrt r such that, we get :



r = 1.83 m
Dividing equation (1) with r such that,



Hence, this is the required solution.
In this problem we have the electric field intensity E:
E = 6.5 ×
newtons/coulomb
We have the magnitude of the load:
q = 6.4 ×
coulombs
We also have the distance d that the load moved in a direction parallel to the field 1.2 ×
meters.
We know that the electric potential energy (PE) is:
PE = qEd
So:
PE = (6.4 ×
)(6.5 ×
)(1.2 ×
)
PE = 5.0 x
joules
None of the options shown is correct.
Answer:
His gravitational potential energy will increase as well.
Explanation:
Let gpe represent gravitational potential energy.
gpe = mass × gravitational field strength × height
From the formula above, we can conclude that as the mass of a body increases, it's gpe increases too.