The greater the mass of an object, the greater<span> its gravitational force.
</span>
Plz chose as brainliest answer plz :) <#
1. C
2. C
3. In elastic deformation, the deformed body returns to its original shape and size after the stresses are gone. In ductile deformation, there is a permanent change in the shape and size but no fracturing occurs. In brittle deformation, the body fractures after the strength is above the limit.
4. Normal faults are faults where the hanging wall moves in a downward force based on the footwall; they are formed from tensional stresses and the stretching of the crust. Reverse faults are the opposite and the hanging wall moves in an upward force based on the footwall; they are formed by compressional stresses and the contraction of the crust. Thrust faults are low-angle reverse faults where the hanging wall moves in an upward force based on the footwall; they are formed in the same way as reverse faults. Last, Strike-slip faults are faults where the movement is parallel to the crust of the fault; they are caused by an immense shear stress.
I hope this helped :D
Answer:
D) 2-methylpent-2-ene
Explanation:
This is an elimination reaction of Halogenoalkane. 2-bromo-2-methylpentane when is heated with NaOH or NaOC2O5( sodium ethoxide) in ethanol will form alkene rather than alcohol.
2-methylpent-1-ene is minor product since double bond form with secondary Carbon rather than primary Carbon.
Ionic compounds generally occur between metals and non-metals due to their large electronegativity difference. You can simple go down Group 1 and Group 17 of the periodic table.
Examples:
NaCl (Sodium Chloride)
KCl (Potassium Chloride)
RbCl (Rubidium Chloride)
CsCl (Cesium Chloride)