A change in position with respect to a reference point is called motion
hope it helps...
Answer:
Hey there!
This is false. A qualitative study is about how a thing looks, not based on any mathematical or scientific data. Quantitative studies, on the other hand, draw conclusions.
Let me know if this helps :)
The rope will remain taut until the particle makes 79⁰ angle.
<h3>Change in kinetic energy of the particle</h3>
The change in kinetic energy of the particle is calculated as follows;
ΔK.E = K.Ei - K.Ef
Before the particle will achieve the given angular displacement, it will touch two new corners. Total kinetic energy lost = 30%
ΔK.E = 100%K.E - 30%K.E = 70%K.E = 0.7K.E
- let the vertical displacement of the particle = h
- horizontal length = side of the prism = a
- hypotenuse side = length of the pendulum = L
<h3>Apply principle of conservation of energy</h3>
K.E = P.E
0.7K.E = mgh
0.7(¹/₂mv²) = mg(Lsinθ)
0.7(v²) = 2g(Lsinθ)
from third kinematic equation;
v² = u² + 2gh
v² = 0 + 2gh
v² = 2g(a tanθ)
0.7(2g(a tanθ)) = 2g(Lsinθ)
0.7(a tanθ) = Lsinθ
0.7a/L = sinθ/tanθ
0.7a/L = cosθ
(0.7 x 0.8)/(3) = cosθ
0.1867 = cosθ
θ = cos⁻¹(0.1867)
θ = 79⁰
Thus, the rope will remain taut until the particle makes 79⁰ angle.
Learn more about kinetic energy here: brainly.com/question/25959744
#SPJ1
<span>A rocket in its simplest form is a chamber enclosing a gas under pressure. A small opening at one end of the chamber allows the gas to escape, and in doing so provides a thrust that propels the rocket in the opposite direction. A good example of this is a balloon. Air inside a balloon is compressed by the balloon's rubber walls. The air pushes back so that the inward and outward pressing forces are balanced. When the nozzle is released, air escapes through it and the balloon is propelled in the opposite direction.</span>