Answer:
The energy absorbed in the first move is greater than the energy released in the second move
Explanation:
Electrons require (absorb) energy to move to a higher energy level when there is a large external heat source, the presence of an electric field or by colliding with other electrons
And the amount of energy absorbed by the electron is exactly equal to the change in the energy state between the initial energy level of the electron and the destination energy level
Therefore, given that the energy level of the electron at level 2 is higher than the energy level of the electron when at level 1, we have;
The difference in the energy level between level 4 and level 1 is greater than the difference in the energy level between level 4 and level 2 and more energy is absorbed and therefore, released when the electron moves from level 1 to level 4 than when the electron drops from level 4 to level 2.
The most likely result is that 'the energy absorbed in the first move is greater than the energy released in the second move'.
Answer:
unbalanced
Explanation:
as the atoms on the one side do not equal to the atoms on the other sides
Answer: 
Explanation:
Given : Sample size : n= 30 , it means it is a large sample (n≥ 30), so we use z-test .
Significance level : 
Critical value: 
Sample mean : 
Standard deviation : 
The formula to find the confidence interval is given by :-

i.e. 
i.e. 

Hence, the 95% confidence interval for the mean mpg in the entire population of that car model = 
Answer:
P₂ = 0.09 atm
Explanation:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
Given data:
Initial volume = 0.225 L
Initial pressure = 338 mmHg (338/760 =0.445 atm)
Initial temperature = 72 °C (72 +273 = 345 K)
Final temperature = -15°C (-15+273 = 258 K)
Final volume = 1.50 L
Final pressure = ?
Solution:
P₁V₁/T₁ = P₂V₂/T₂
P₂ = P₁V₁ T₂/ T₁ V₂
P₂ = 0.445 atm × 0.225 L × 258 K / 345 K × 1.50 L
P₂ = 25.83 atm .L. K / 293 K . L
P₂ = 0.09 atm
Answer:
the pressure P= 40.03 bar
Explanation:
The Van der Waals equation states that
P= R*T/(V-b) - a/V²
where
T= absolute temperature = 295 K
V= molar volume = 0.590 L/mol
R= ideal gas constant = 0.082 atm*L/mol*K
a= van der Waals parameter = 1.355 bar⋅dm⁶/mol² * (0.987 atm/bar) * (1 L²/dm⁶) = 1.337 atm ⋅L²/mol²
b= van der Waals parameter = 0.032 dm³/mol *(1 L/dm³) = 0.032 L/mol
then replacing values
P= R*T/(V-b) - a/V² = 0.082 atm*L/mol*K*295 K/( 0.590 L/mol-0.032 L/mol) - 1.337 atm ⋅L²/mol²/(0.590 L/mol)² = 39.51 atm
P= 39.51 atm / (0.987 atm/bar) = 40.03 bar