Answer:
6.9 ml of concentrate
Explanation:
100 ml of .1 M will require .01 moles
from a 1.45 M solution, .01 mole would be
.01 mole / ( 1.45 mole / liter) = 6.9 ml of the concentrate then dilute to 100 ml
Answer:
8.625 grams of a 150 g sample of Thorium-234 would be left after 120.5 days
Explanation:
The nuclear half life represents the time taken for the initial amount of sample to reduce into half of its mass.
We have given that the half life of thorium-234 is 24.1 days. Then it takes 24.1 days for a Thorium-234 sample to reduced to half of its initial amount.
Initial amount of Thorium-234 available as per the question is 150 grams
So now we start with 150 grams of Thorium-234





So after 120.5 days the amount of sample that remains is 8.625g
In simpler way , we can use the below formula to find the sample left

Where
is the initial sample amount
n = the number of half-lives that pass in a given period of time.
The d subshell has 5 orbitals (with each being able to hold two electrons. As such, the d orbital can hold a maximum of 10 electrons.
<span>The "d" subshell can hold a maximum of _TEN_ electrons.</span>
Explanation:
Gay-Lussac's law states that the pressure of a given mass of gas varies directly with the absolute temperature of the gas when the volume is kept constant. Mathematically, it can be written as: {\displaystyle {\frac {P}{T}}=k}. It is a special case of the ideal gas law.