Answer:
A single molecule of water has been isolated for the first time by trapping it in a fullerene cage. Water molecules are never found alone — they are always hydrogen-bonded to other molecules of water or polar compounds.
While making small volumes of pure water in a lab is possible, it's not practical to “make” large volumes of water by mixing hydrogen and oxygen together. The reaction is expensive, releases lots of energy, and can cause really massive explosions.
While making small volumes of pure water in a lab is possible, it's not practical to “make” large volumes of water by mixing hydrogen and oxygen together. The reaction is expensive, releases lots of energy, and can cause really massive explosions.
A water molecule consists of three atoms; an oxygen atom and two hydrogen atoms, which are bond together like little magnets. The atoms consist of matter that has a nucleus in the centre. The difference between atoms is expressed by atomic numbers.
Explanation:
Answer:
c = 0.0432moldm ^−3
Explanation:
The first step would be to find the molar ratio in the reaction. Now generally, one can simplify strong acid-strong base reaction by saying:
Acid+Base ->Salt+ Water
Answer:
100Jkg/°C
Explanation:
Given parameters:
Mass of metal = 2kg
Amount of heat energy = 1600J
Initial temperature = 5°C
Final temperature = 13°C
Unknown:
Specific heat capacity of the metal = ?
Solution:
Specific heat capacity of a body is the amount of heat needed to raise the temperature of unit mass of a body by 1°C.
H = m x C x (T₂ - T₁ )
H is the amount of heat
m is the mass
C is the unknown specific heat capacity
T is the temperature
Insert the parameters and solve;
1600 = 2 x C x (13 - 5)
1600 = 16C
C = 100Jkg/°C
Answer : Unit of any measurement can be defined as a definite magnitude of a given quantity, which is defined and adopted by convention or by law, that is widely used as a standard for measurement of the same kind of quantity. If the unit system was not given to the measurements we would haphazardly complicate the calculations.
Example : If someone wrote 500 in the paper as a answer to a question. But forgot to mention the units of the measurements. It can be misinterpreted by anyone as there are no units written besides the number (unit less). Complications grow. One cannot simply predict is it 500 m? 500 g? 500 mL? 500 km? 500 s? or 500 M? anything can be guessed. To be specific about the answer to any problem we should always use units. Which will help to narrow down the approach of any problem and give a measurable related quantity about the associated problem.
We're given the [OH⁻] as 8.34 × 10⁻¹² M. Using the formula pOH = -log[OH⁻], the pOH of this solution would be -log(8.34 × 10⁻¹²) ≈ 11.08.
The pOH is, for lack of a better term, the "opposite" of pH: A pOH of 7 is neutral; a pOH less than 7 is <em>basic</em>; and a pOH greater than 7 is <em>acidic</em>.
This follows from the relation, pH + pOH = 14. In this case, with a pOH of 11.08, our pH would be 14 - 11.08 = 2.92, which is acidic (pH < 7).
Thus, the correct answer choice is B.