A conductor is something which allows electricity to pass through it
an example is a coin
An insulator is something which cannot allow electricity to pass through it
an example is plastic (or plastic cotton reel, plastic container ect.)
Static electricity is when you rub two things together to create static
I'm not sure if i helped on the last question but i am definitely sure of the first ones
Answer:
the ball's velocity was approximately 0.66 m/s
Explanation:
Recall that we can study the motion of the baseball rolling off the table in vertical component and horizontal component separately.
Since the velocity at which the ball was rolling is entirely in the horizontal direction, it doesn't affect the vertical motion that can therefore be studied as a free fall, where only the constant acceleration of gravity is affecting the vertical movement.
Then, considering that the ball, as it falls covers a vertical distance of 0.7 meters to the ground, we can set the equation of motion for this, and estimate the time the ball was in the air:
0.7 = (1/2) g t^2
solve for t:
t^2 = 1.4 / g
t = 0.3779 sec
which we can round to about 0.38 seconds
No we use this time in the horizontal motion, which is only determined by the ball's initial velocity (vi) as it takes off:
horizontal distance covered = vi * t
0.25 = vi * (0.38)
solve for vi:
vi = 0.25/0.38 m/s
vi = 0.65798 m/s
Then the ball's velocity was approximately 0.66 m/s
Answer:
the answer is ture
Explanation:
because the energy substances must absorb in order to change from liquid to gas
Answer:
16.4287
Explanation:
The force and displacement are related by Hooke's law:
F = kΔx
The period of oscillation of a spring/mass system is:
T = 2π√(m/k)
First, find the value of k:
F = kΔx
78 N = k (98 m)
k = 0.796 N/m
Next, find the mass of the unknown weight.
F = kΔx
m (9.8 m/s²) = (0.796 N/m) (67 m)
m = 5.44 kg
Finally, find the period.
T = 2π√(m/k)
T = 2π√(5.44 kg / 0.796 N/m)
T = 16.4287 s