The specific heat capacity of this chunk of metal is equal to 0.32 J/g°C.
<u>Given the following data:</u>
- Quantity of energy = 400 Joules
- Initial temperature = 20°C
To determine the specific heat capacity of this chunk of metal:
<h3>
The formula for quantity of heat.</h3>
Mathematically, quantity of heat is given by the formula;

<u>Where:</u>
- Q represents the quantity of heat.
- m represents the mass of an object.
- c represents the specific heat capacity.
- ∅ represents the change in temperature.
Making c the subject of formula, we have:

Substituting the given parameters into the formula, we have;

Specific heat, c = 0.32 J/g°C.
Read more on specific heat here: brainly.com/question/2834175
Answer:
Ionic bonds form when a nonmetal and a metal exchange electrons, while covalent bonds form when electrons are shared between two nonmetals.
Methanol is prepared by reacting Carbon monoxide and Hydrogen gas,
CO + 2 H₂ → CH₃OH
Calculating Moles of CO:
According to equation,
32 g (1 mole) of CH₃OH is produced by = 1 Mole of CO
So,
3.60 × 10² g of CH₃OH is produced by = X Moles of CO
Solving for X,
X = (3.60 × 10² g × 1 Mole) ÷ 32 g
X = 11.25 Moles of CO
Calculating Moles of H₂:
According to equation,
32 g (1 mole) of CH₃OH is produced by = 2 Mole of H₂
So,
3.60 × 10² g of CH₃OH is produced by = X Moles of H₂
Solving for X,
X = (3.60 × 10² g × 2 Mole) ÷ 32 g
X = 22.5 Moles of H₂
Result:
3.60 × 10² g of CH₃OH is produced by reacting 11.25 Moles of CO and 22.5 Moles of H₂.
The question is improperly formatted.
What is the concentration of H+ ions in a 2.2 M solution of HNO3.
Answer:-
2.2 moles of H+ per litre
Explanation:-
M stands for molarity. 2.2 M means 2.2 moles of HNO3 is present per litre of the solution.
Now HNO3 has just 1 H in it's formula. HNO3 would give H+. So 2.2 moles of HNO3 would mean 2.2 moles of H+ per litre.