Answer:
here we can say that acceleration of the satellite is same as the gravitational field due to Earth at that location
Explanation:
As we know that gravitational field is defined as the force experienced by the satellite per unit of mass
so we will have

now in order to find the acceleration of the satellite we know by Newton's II law

so we will have

so here we can say that acceleration of the satellite is same as the gravitational field due to Earth at that location
Answer:
1838216 J
Explanation:
95 km/h = 26.39 m/s
40 km/h = 11.11 m/s
Initial kinetic energy
= .5 x 1600 x(26.39)²
= 557145.67 J
Final kinetic energy
= .5 x 1600 x ( 11.11)²
= 98745.68 J
Loss of kinetic energy
= 458400 J
Loss of potential energy
= mg x loss of height
= 1600 x 9.8 x 340 sin 15
= 1379816 J
Sum of Loss of potential energy and Loss of kinetic energy
= 1379816 + 458400
= 1838216 J
This is the work done by the friction . So this is heat generated.
Answer:
H = 3.9 m
Explanation:
mass (m) = 48 kg
initial velocity (initial speed) (U) = 8.9 m/s
final velocity (V) = 1.6 m/s
acceleration due to gravity (g) = 9.8 m/s^{2}
find the height she raised her self to as she crosses the bar (H)
from energy conservation, the change in kinetic energy = change in potential energy
0.5m(V^{2} - [test]U^{2}[/tex]) = mg(H-h)
where h = initial height = 0 since she was on the ground
the equation becomes
0.5m(V^{2} - [test]U^{2}[/tex]) = mgH
0.5 x 48 x (1.6^{2} - [test]8.9^{2}[/tex]) = 48 x 9.8 x H
-1839.6 = 470.4 H (the negative sign indicates a decrease in kinetic energy so we would not be making use of it further)
H = 3.9 m
Answer:
false
Explanation:
It doesn't the copper wire wouldn't even be pulled by the magnet at all and the electricity would stay inside of the the force of the copper wire