The first collision because a greater amount of momentum must be taken and used in order to push the cart back, giving it a greater mass and impulse
A) Work energy relation;
Work =ΔKE ; work done = Force × distance, while, Kinetic energy = 1/2 MV²
F.s = 1/2mv²
F× 4×10^-2 = 1/2 × 5 ×10^-3 × (600)²
F = 900/0.04
= 22500 N
Therefore, force is 22500 N
b) From newton's second law of motion;
F = Ma
Thus; a = F/m
= 22500/(5×10^-3)
= 4,500,000 m/s²
But v = u-at
0 = 600- 4500,000 t
t = 1.33 × 10^-4 seconds
<span>Assuming the car is travelling in the same direction for the entire hour, the acceleration is zero.</span>
Answer:
x = 0.75801 = 75.801%
T_2 = 72..78 degree F
Explanation:
From superheated R 134 a properties table
At 200 lb/in^2 and 200 degree F

steady flow energy equation is givena s



At 90 lb/in2 Tsat = 72.78 degree F

hfg = 77.345 Btu/lbm
h = hf + x hfg

solving for x we get
x = 0.75801 = 75.801%

Im 70 percent sure that the right answer is chromosphere