Both positive work and negative work have meaning: Positive work follows when the force has a component parallel to the displacement. Positive work adds energy to a system. Negative work follows when the force has a component opposite or against the displacement.
Answer: 259.2 KJ
Explanation:
The formula calculate work don in a circuit is given by :-
, where Q is charge and V is the potential difference.
The formula to calculate charge in circuit :-
, where I is current and t is time.
Given : Current : 
Potential difference : 
Time : 
Now, 
Then, 
Hence, the work done = 259.2 KJ
Answer:
The speed is 24 
Explanation:
A wave is a disturbance that propagates through a certain medium or in a vacuum, with transport of energy but without transport of matter.
The wavelength is the minimum distance between two successive points of the wave that are in the same state of vibration. It is expressed in units of length (m).
Frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).
The speed of propagation is the speed with which the wave propagates in the middle, that is, the magnitude that measures the speed at which the wave disturbance propagates along its displacement. Relate wavelength (λ) and frequency (f) inversely proportionally using the following equation:
v = f * λ.
In this case, λ= 8 meter and f= 3 Hz
Then:
v= 3 Hz* 8 meter
So:
v= 24 
<u><em>The speed is 24 </em></u>
<u><em></em></u>
Answer:
<em>The kinetic energy of a spinning disk will be reduced to a tenth of its initial kinetic energy if its moment of inertia is made five times larger, but its angular speed is made five times smaller.</em>
<em></em>
Explanation:
Let us first consider the initial characteristics of the angular motion of the disk
moment of inertia = 
angular speed = ω
For the second case, we consider the characteristics to now be
moment of inertia =
(five times larger)
angular speed = ω/5 (five times smaller)
Recall that the kinetic energy of a spinning body is given as

therefore,
for the first case, the K.E. is given as

and for the second case, the K.E. is given as


<em>this is one-tenth the kinetic energy before its spinning characteristics were changed.</em>
<em>This implies that the kinetic energy of the spinning disk will be reduced to a tenth of its initial kinetic energy if its moment of inertia is made five times larger, but its angular speed is made five times smaller.</em>