Answer:
The jug drowns because the density of the jug is more than that of the density of water.
Answer:
4.37 * 10^-4 J
Explanation:
Energy stored :
mgΔl / 2
m = mass = 10kg ; g = 9.8m/s² ; r = cross sectional Radius = 1cm = 1 * 10-2 m
Δl = mgl / πr²Y
Y = Youngs modulus = Y=3.5 ×10^10 ; l = Length = 1m
Δl = (10 * 9.8 * 1) / π * (1 * 10^-2)²* 3.5 ×10^10
Δl = 98 / 3.5 * π * 10^6
Δl = 0.00000891267
Energy stored :
mgΔl / 2
(10 * 9.8 * 0.00000891267) / 2
= 0.00043672083 J
4.37 * 10^-4 J
As one moves farther and farther from the Sun, the distance between adjacent planets is greater.
Answer:
The value is 
Explanation:
From the question we are told that
The weight of the block is 
The dimension of the block is 
Generally two atmosphere is equivalent to

Generally 1 atm = 
The area of the block would be evaluated using width and height because we need for the smaller surface to be in contact with the ground in order to maximize the pressure and minimize number of blocks
So

=> 
Generally the force due to this blocks is mathematically represented as

Here N is the number of blocks
So

=> 
Answer:
5m/8
Explanation:
Function T gives the time the Hobbits have to prepare for the attack, T(k), in minutes, as a function of troll's distance, k, in meters.
Function V gives visibility from the watchtower, V(m), in meters, as a function of the height of the watchtower, m, in meters.
Therefore, T(V(m)) will give the time the Hobbits have to prepare for the troll attack as a function of the height, m, of the watchtower.
We can input m into function V to obtain the visibility from watchtower, V(m), in meters. Since visibility indicates the distance you can see, this also gives the distance of the trolls. This can then be input into function T to obtain the time that the Hobbits have to prepare for a troll attack.
Let's find T(V(m)) by substituting the formula for V(m) into function T as shown below.
T(V(M))=T(50m)
=50m/80
We can simplify this as follows:
=50m/80
=5m/8