Answer:
36,67 degrees Celsius
Explanation:
The simplest way to approach this problem, given the information provided, is to simply start with the speed difference.
Goal: 353 m/s
Start: 343 m/s (at 20 degrees Celsius).
Difference: 10 m/s
Variation rate: 0.60 m/s/d (d = degree)

So, 16,67 degrees more than the starting point.
The temperature will then be 36.67 degrees Celsius, when the sound travels at the speed of 353 m/s.
Answer:
Lithium
Explanation:
The equation for the photoelectric effect is

where
is the energy of the incident photon, with
h being the Planck constant
c is the speed of light
is the wavelength of the photon
is the work function of the metal (the minimum energy needed to extract the photoelectron from the metal)
is the maximum kinetic energy of the emitted photoelectrons
In this problem, we have
is the wavelength of the incident photon
is the maximum kinetic energy of the electrons
First of all we can find the energy of the incident photon

Converting into electronvolts,

So now we can re-arrange the equation of the photoelectric effect to find the work function of the metal

So the metal is most likely Lithium, which has a work function of 2.5 eV.
Answer:
The extension is directly proportional to the force applied.
ex: if the force is doubled, the extension doubles. This works until the limit of proportionality is exceeded.
Hope this helped~
Explanation:
Double Displacement Reaction
An element from each of two compounds switch places.
Example: compound + compound ⇒ compound + compound
Chemical reactions are processes in which substances change into other substances. A chemical reaction takes place if one or more of these occur:
Color changes - Different combinations of molecules reflect light differently. A color change indicates a change in molecules.
Heat content changes- In all chemical reactions, the heat content of the reactants and the heat content of the products is never the same. Sometimes the difference is great and can be easily detected. At other times, the difference is slight and more difficult to detect.
Gas produced - Whenever a gaseous product forms in a liquid solution, bubbles can be seen. A colorless gas produced in a reaction of solids is much harder to detect.
Precipitate forms- Precipitates are insoluble products formed by a reaction taking place in a liquid solution. This insoluble product will eventually settle to the bottom, but might immediately appear by turning the clear solution cloudy.
To develop this problem we will apply the concepts related to the Doppler effect. The frequency of sound perceive by observer changes from source emitting the sound. The frequency received by observer
is more than the frequency emitted by the source. The expression to find the frequency received by the person is,

= Frequency of the source
= Speed of sound
= Speed of source
The velocity of the ambulance is


Replacing at the expression to frequency of observer we have,


Therefore the frequency receive by observer is 878Hz