The half-life of any substance is the amount of time taken for half of the original quantity of the substance present to decay. The half-life of a radioactive substance is characteristic to itself, and it may be millions of years long or it may be just a few seconds.
In order to determine the half-life of a substance, we simply use:
t(1/2) = ln(2) / λ
Where λ is the decay constant for that specific isotope.
Answer:5
Explanation:The pnictogen group, or nitrogen group, is located in column 15 of the periodic table. This family consists of the elements nitrogen, phosphorus, arsenic, antimony, bismuth, and ununpentium (N, P, As, Sb, Bi, and Uup, respectively). Each member of this family contains five valence electrons.
Answer:
1. 48 mols
2. 0.2 M
5. 1.25 L
Explanation:
Molarity= mols divided by liters
Hope this helps not sure about 3 and 4
Answer
:
2. Hydrogen forms bonds through the overlap of 1s atomic orbitals and the sharing of electrons between atoms. Carbon forms bonds through the overlapping of sp hybrid atomic orbitals and the sharing of electrons between carbon atoms.
Explanation:
The H-H bond is formed by the overlap of two 1s orbitals and the sharing of electrons between the two atoms.
A carbon atom must use the overlap of hybridized atomic orbitals and the sharing of electrons to bond with another carbon atoms.
1. is <em>wrong</em> because H can use only its <em>1s orbital</em> for bonding.
3. is <em>wrong</em> because C must <em>share electrons</em> to form a carbon-carbon bond.
4. is <em>wrong</em> because <em>C does NOT use overlapping of 2s orbitals</em> for bonding. It uses the overlap of hybridized orbitals.
5. is <em>wrong</em> because H must <em>share electrons</em> to form an H-H bond.
Answer:
Explanation: Zaitsev’s or Saytzev’s (anglicized spelling) rule is an empirical rule used to predict regioselectivity of 1,2-elimination reactions occurring via E1 mechanism or via E2 mechanism. It states that in a regioselective E1 or E2 reaction the major product is the more stable alkene, i.e., the alkene with the more highly substituted double bond.
E1 reaction always follow Zaitsev’s rule; with E2 reactions, there are exceptions (see antiperiplanar).