Answer:
b) a = -k / m x
, c) d²x / dt² = - A w² cos (wt+Ф)
, d) and e) T = 2π √m / k
h) a = - A w² cos (wt+Ф)
Explanation:
a) see free body diagram in the attachment
b) We write Newton's second law
Fe = m a
-k x = ma
a = -k / m x
c) the acceleration is
a = d²x / dt²
If x = A cos wt
v = dx / dt = -A w sin (wt
+Ф)
a = d²x / dt² = - A w² cos (wt+Ф)
d) we substitute in Newton's second law
d²x / dt² = -k / m x
We call
w² = k / m
e) substitute to find w
-A w² cos (wt+Ф) = -k / m A cos (wt+Ф)
w² = k / m
Angular velocity and frequency are related
w = 2π f
f = 1 / T
We substitute
T = 2π / w
T = 2π √m / k
g) v= - A w sin (wt+Ф)
h) acceleration is
a = - A w² cos (wt+Ф)
Answer:
, 
Explanation:
The magnitude of the electromagnetic force between the electron and the proton in the nucleus is equal to the centripetal force:

where
k is the Coulomb constant
e is the magnitude of the charge of the electron
e is the magnitude of the charge of the proton in the nucleus
r is the distance between the electron and the nucleus
v is the speed of the electron
is the mass of the electron
Solving for v, we find

Inside an atom of hydrogen, the distance between the electron and the nucleus is approximately

while the electron mass is

and the charge is

Substituting into the formula, we find

Transfer of heat through objects touching source
Answer:
Spot B & Spot C
Explanation:
They're closer to the equator and get more direct solar radiation, making them more likely to be where a warm air mass would form.
Answer: no
Explanation: we need a picture