Answer:
The correct option is D
Explanation:
This question can be better understood when discussed using the Newton's first law of motion which states that an object would continue to move with a uniform speed (in a straight line) unless acted upon by an external force. What happens here (in the question) is that the bike rider would have continued moving at a constant speed (to the right) if not for the opposing force of the wind that acted against her (to the left). <u>This wind/force would cause her speed to reduce or slow down (as posited by the law)</u>.
The value of relative humidity becomes 100% leading to condensation of water vapor in the air into water droplets or water (dew)
Answer:
1.0 m/s
Explanation:
First, convert to SI units.
0.30 km × (1000 m / km) = 300 m
5.0 min × (60 s / min) = 300 s
Speed is distance divided by time:
300 m / 300 s = 1.0 m/s
Answer:
Explanation:
The condition for translation equilibrium is that is that the net force acting on the body must be zero.
The sum all the external forces acting on the body in horizontal as well as vertical direction must be zero.
∑Fₓ=0 and ∑Fy=0
now if the above two condition are satisfied the rigid body is said to be in translational equilibrium.
God bless... hope this help to clear your doubt.
Answer:
0 Newtons
Explanation:
The velocity of the object does not change, it is a constant 54 km/hr. When velocity does not change, acceleration is zero. Using the formula Force = mass x acceleration, we find:
mass = 1200 kg
acceleration = 0
F = (1200)(0) = 0