Let's call the constant acceleration a.
At a time t, its speed will thus be v(t)=a*t+v0 where v0 is its initial speed, here 10 m/s. Hence v(t)=a*t+10.
From there we can deduce the position P(t)=a*t^2/2+10t+p0 where p0 is the initial position, here 0.
Hence P(t)=a*t^2/2+10t
Let's call T the time at which it's at 50 m/s, we know that P(T)=225m and that v(T)=50 m/s hence a*T+10=50 thus a=40/T and P(T)=(40/2+10)T=30T
Hence T=225/30=7.5
It took 7.5 seconds
Answer: 0.86 × 10^14
Explanation:
Given the following :
Radius of proton = 1.2 × 10-15 m
Radius of hydrogen atom = 5.3 × 10-11 m
Density of proton could be calculated thus:
Mass of proton = 1.67 × 10^-27 kg
Using the formula :
(4/3) × pi × r^3
(4/3) × 3.142 × (1.2 × 10^-15)^3 = 7.24 × 10^-45
Density = mass / volume
Density = (1.67 × 10^-27) / ( 7.24 × 10^-45)
= 0.2306 × 10^18
Density of hydrogen atom:
Mass of hydrogen atom= 1.67 × 10^-27 kg
Using the formula :
(4/3) × pi × r^3
(4/3) × 3.142 × (5.3 × 10^-11)^3 = 6.24 × 10^-31
Density = mass / volume
Density = (1.67 × 10^-27) / ( 6.24 × 10^-31)
= 0.2676 × 10^4
Ratio is thus:
Density of proton / density of hydrogen atom
0.2306 × 10^18 / 0.2676 × 10^4 = 0.8617 × 10^14
Answer: Fusion
Explanation:
Combustion is a chemical reaction in which hydrocarbons are burnt in the presence of oxygen to give carbon dioxide and water.
Nuclear fusion is a process which involves the conversion of two small nuclei to form a heavy nuclei along with release of energy.

Nuclear fission is a process which involves the conversion of a heavier nuclei into two or more small and stable nuclei along with the release of energy.

True clicking the office button and then clicking new would display the new document.