The atom in an excited state has more energy and is less stable than the atom in the ground state.
Answer:
r₂ = 0.316 m
Explanation:
The sound level is expressed in decibels, therefore let's find the intensity for the new location
β = 10 log
let's write this expression for our case
β₁ = 10 log \frac{I_1}{I_o}
β₂ = 10 log \frac{I_2}{I_o}
β₂ -β₁ = 10 (
)
β₂ - β₁ = 10
log \frac{I_2}{I_1} =
= 3
= 10³
I₂ = 10³ I₁
having the relationship between the intensities, we can use the definition of intensity which is the power per unit area
I = P / A
P = I A
the area is of a sphere
A = 4π r²
the power of the sound does not change, so we can write it for the two points
P = I₁ A₁ = I₂ A₂
I₁ r₁² = I₂ r₂²
we substitute the ratio of intensities
I₁ r₁² = (10³ I₁ ) r₂²
r₁² = 10³ r₂²
r₂ = r₁ / √10³
we calculate
r₂ =
r₂ = 0.316 m
IM sure there is C, D, and E in kuiper belts, but not really sure of silicon and iron
Answer:
Explanation:
Given
Frequency of SHM is 
Amplitude of SHM is 
Cup begins to slip when it overcomes the friction force
Friction force 
Applied force 


and maximum acceleration during SHM is






Voltmeter is used to find the potential difference between two points.
We always connect it in parallel to the points where we need the potential difference.
Here in order to make the reading accurate we can increase the resistance of voltmeter so that it can not withdraw any current from the circuit.