The initial mass of sodium hydroxide is 3.3 g (answer C)
<u><em>calculation</em></u>
Step 1 : find the moles of iron (ii) hydroxide ( Fe(OH)₂
moles = mass÷ molar mass
from periodic table the molar mass of Fe(OH)₂ = 56 + [16 +1]2 = 90 g/mol
moles is therefore = 3.70 g÷ 90 g/mol = 0.041 moles
Step 2: use the mole ratio to calculate the moles of sodium hydroxide (NaOH)
from given equation NaOH : Fe(OH)₂ is 2 :1
therefore the moles of NaOH = 0.041 x 2 = 0.082 moles
Step 3: find mass of NaOH
mass = moles x molar mass
from the periodic table the molar mass of NaOH = 23 +16 +1 = 40 g/mol
mass = 0.082 moles x 40 g/mol = 3.3 g ( answer C)
The number of molecules decrease
Answer:
The volume is 1.2L
Explanation:
Initial volume (V1) = 700mL = 0.7L
Initial temperature (T1) = 7°C = (7 + 273.15)K = 280.15K
Initial pressure = 106.6kPa = 106600Pa
Final temperature (T2) = 27°C = (27 + 273.15)K = 300.15K
Final pressure (P2) = 66.6kPa = 66600Pa
Final volume (V2) = ?
To solve this question, we need to use combined gas equation which is a combination of Boyle's law, Charles Law and pressure law.
(P1 × V1) / T1 = (P2 × V2) / T2
solve for V2 by making it the subject of formula,
P1 × V1 × T2 = P2 × V2 × T1
V2 = (P1 × V1 × T2) / (P2 × T1)
V2 = (106600 × 0.7 × 300.15) / (66600 × 280.15)
V2 = 22397193 / 18657990
V2 = 1.2L
The final volume of the gas is 1.2L
It speeds up the dissolving of the sugar. Agitation
Answer:
B
Explanation:
So, a pot of boliling is hot right? of course, since it is hot thermal energy will be transferred from one place to another. I don't know if this is correct but I just wanted to give it a try.