1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Over [174]
3 years ago
7

Black holes are formed when stars lose gas to burn, form a red super giant, cool down, then becomes so dense-?

Physics
1 answer:
ruslelena [56]3 years ago
3 0

Answer:

D the star explodes

Explanation:

You might be interested in
(I) A novice skier, starting from rest, slides down an icy frictionless 8.0° incline whose vertical height is 105 m. How fast is
Vlad1618 [11]

Answer:

v = 45.37 m/s

Explanation:

Given,

angle of inclination = 8.0°

Vertical height, H  = 105 m

Initial K.E. = 0 J

Initial P.E. = m g H

Final PE = 0 J

Final KE = \dfrac{1}{2}mv^2

Using Conservation of energy

KE_i + PE_i + KE_f + PE_f

0 + m g H = \dfrac{1}{2}mv^2 + 0

v = \sqrt{2gH}

v = \sqrt{2\times 9.8 \times 105}

v = 45.37 m/s

Hence, speed of the skier at the bottom is equal to v = 45.37 m/s

3 0
3 years ago
A parachutist falls 50.0 m without friction. When the parachute opens, he slows down at a rate of 67 m/s*2. If he reaches the gr
KIM [24]

Answer:

3.49 seconds

3.75 seconds

-43200 ft/s²

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

s=ut+\frac{1}{2}at^2\\\Rightarrow 50=0t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow t=\sqrt{\frac{50\times 2}{9.81}}\\\Rightarrow t=3.19\ s

Time the parachutist falls without friction is 3.19 seconds

v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 9.81\times 50+0^2}\\\Rightarrow v=31.32\ m/s

Speed of the parachutist when he opens the parachute 31.32 m/s. Now, this will be considered as the initial velocity

v=u+at\\\Rightarrow 11=31.32+9.81t\\\Rightarrow t=\frac{11-31.32}{-67}=0.3\ s

So, time the parachutist stayed in the air was 3.19+0.3 = 3.49 seconds

s=ut+\frac{1}{2}at^2\\\Rightarrow \frac{s}{2}=0t+\frac{1}{2}\times a\times t^2\\\Rightarrow \frac{s}{2}=\frac{1}{2}at^2

s=ut+\frac{1}{2}at^2\\\Rightarrow \frac{s}{2}=u1.1+\frac{1}{2}\times a\times 1.1^2

Now the initial velocity of the last half height will be the final velocity of the first half height.

v=u+at\\\Rightarrow v=at

Since the height are equal

\frac{1}{2}at^2=u1.1+\frac{1}{2}\times a\times 1.1^2\\\Rightarrow \frac{1}{2}at^2=at1.1+\frac{1}{2}\times a\times 1.1^2\\\Rightarrow 0.5t^2-1.1t-0.605=0\\\Rightarrow 500t^2-1100t-605=0

t=\frac{11\left(1+\sqrt{2}\right)}{10},\:t=\frac{11\left(1-\sqrt{2}\right)}{10}\\\Rightarrow t=2.65, -0.45

Time taken to fall the first half is 2.65 seconds

Total time taken to fall is 2.65+1.1 = 3.75 seconds.

When an object is thrown with a velocity upwards then the velocity of the object at the point to where it was thrown becomes equal to the initial velocity.

v^2-u^2=2as\\\Rightarrow a=\frac{v^2-u^2}{2s}\\\Rightarrow a=\frac{0^2-240^2}{2\times \frac{8}{12}}\\\Rightarrow a=-43200\ ft/s^2

Magnitude of acceleration is -43200 ft/s²

5 0
3 years ago
A train is moving along a horizontal track. A pendulum suspended from the roof makes an angle of 4° with the vertical. If g=10m/
nataly862011 [7]

Answer:

Train accaleration = 0.70 m/s^2

Explanation:

We have a pendulum (presumably simple in nature) in an accelerating train. As the train accelerates, the pendulum is going move in the opposite direction due to inertia. The force which causes this movement has the same accaleration as that of the train. This is the basis for the problem.

Start by setting up a free body diagram of all the forces in play: The gravitational force on the pendulum (mg), the force caused by the pendulum's inertial resistance to the train(F_i), and the resulting force of tension caused by the other two forces (F_r).

Next, set up your sum of forces equations/relationships. Note that the sum of vertical forces (y-direction) balance out and equal 0. While the horizontal forces add up to the total mass of the pendulum times it's accaleration; which, again, equals the train's accaleration.

After doing this, I would isolate the resulting force in the sum of vertical forces, substitute it into the horizontal force equation, and solve for the acceleration. The problem should reduce to show that the acceleration is proportional to the gravity times the tangent of the angle it makes.

I've attached my work, comment with any questions.

Side note: If you take this end result and solve for the angle, you'll see that no matter how fast the train accelerates, the pendulum will never reach a full 90°!

8 0
3 years ago
It is known that birds can detect the earth's magnetic field, but the mechanism of how they do this is not known. It has been su
san4es73 [151]

Answer:

EMF = 5.01 \times 10^{-4} Volts

Explanation:

Here we know that the EMF induced in this Field is given as

EMF = vBL

here B = perpendicular component of magnetic field

v = speed of the bird

L = length of the wings

now we have

B = 5\times 10^{-5} sin40

v = 13 m/s

L = 1.2 m

now we have

EMF = (13)(3.21 \times 10^{-5})(1.2)

EMF = 5.01 \times 10^{-4} Volts

8 0
3 years ago
A 873-kg (1930-lb) dragster, starting from rest completes a 401.4-m (0.2509-mile) run in 4.945 s. If the car had a constant acce
Delvig [45]

To solve this problem it is necessary to apply the kinematic equations of motion.

By definition we know that the position of a body is given by

x=x_0+v_0t+at^2

Where

x_0 = Initial position

v_0 = Initial velocity

a = Acceleration

t= time

And the velocity can be expressed as,

v_f = v_0 + at

Where,

v_f = Final velocity

For our case we have that there is neither initial position nor initial velocity, then

x= at^2

With our values we have x = 401.4m, t=4.945s, rearranging to find a,

a=\frac{x}{t^2}

a = \frac{ 401.4}{4.945^2}

a = 16.41m/s^2

Therefore the final velocity would be

v_f = v_0 + at

v_f = 0 + (16.41)(4.945)

v_f = 81.14m/s

Therefore the final velocity is 81.14m/s

8 0
3 years ago
Other questions:
  • Can u answer 4 and 5 for me
    11·1 answer
  • The amplitude of a mechanical wave shows<br> What?
    15·1 answer
  • Which of the following is not a double-replacement?
    8·1 answer
  • I don't know the answer but I think that it is yes I just don't want to get it wrong
    6·2 answers
  • A multi-plattered hard disk is divided into 1100 sectors and 40,000 cylinders. There are six platter surfaces. Each block holds
    5·1 answer
  • An electric motor spins at 1000 rpm and is slowing down at a rate of 10 t rad/s2 ; where t is measured in seconds. (a) If the mo
    12·1 answer
  • The diagram shows a ball falling toward Earth in a vacuum.
    15·2 answers
  • What is the magnitude of the velocity of a 25 kg mass that is moving with a momentum of 100 kg*m/s?
    5·1 answer
  • Aball is thrown horizontaly from the top of a building with an initial velocity of 15 meters per second. At the same instant, a
    7·1 answer
  • what evidence would you expect to find on the moon if it had been subjected to plate tectonics? (select all that apply.)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!