Answer:
v = 45.37 m/s
Explanation:
Given,
angle of inclination = 8.0°
Vertical height, H = 105 m
Initial K.E. = 0 J
Initial P.E. = m g H
Final PE = 0 J
Final KE = 
Using Conservation of energy




v = 45.37 m/s
Hence, speed of the skier at the bottom is equal to v = 45.37 m/s
Answer:
3.49 seconds
3.75 seconds
-43200 ft/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration

Time the parachutist falls without friction is 3.19 seconds

Speed of the parachutist when he opens the parachute 31.32 m/s. Now, this will be considered as the initial velocity

So, time the parachutist stayed in the air was 3.19+0.3 = 3.49 seconds


Now the initial velocity of the last half height will be the final velocity of the first half height.

Since the height are equal


Time taken to fall the first half is 2.65 seconds
Total time taken to fall is 2.65+1.1 = 3.75 seconds.
When an object is thrown with a velocity upwards then the velocity of the object at the point to where it was thrown becomes equal to the initial velocity.

Magnitude of acceleration is -43200 ft/s²
Answer:
Train accaleration = 0.70 m/s^2
Explanation:
We have a pendulum (presumably simple in nature) in an accelerating train. As the train accelerates, the pendulum is going move in the opposite direction due to inertia. The force which causes this movement has the same accaleration as that of the train. This is the basis for the problem.
Start by setting up a free body diagram of all the forces in play: The gravitational force on the pendulum (mg), the force caused by the pendulum's inertial resistance to the train(F_i), and the resulting force of tension caused by the other two forces (F_r).
Next, set up your sum of forces equations/relationships. Note that the sum of vertical forces (y-direction) balance out and equal 0. While the horizontal forces add up to the total mass of the pendulum times it's accaleration; which, again, equals the train's accaleration.
After doing this, I would isolate the resulting force in the sum of vertical forces, substitute it into the horizontal force equation, and solve for the acceleration. The problem should reduce to show that the acceleration is proportional to the gravity times the tangent of the angle it makes.
I've attached my work, comment with any questions.
Side note: If you take this end result and solve for the angle, you'll see that no matter how fast the train accelerates, the pendulum will never reach a full 90°!
Answer:

Explanation:
Here we know that the EMF induced in this Field is given as

here B = perpendicular component of magnetic field
v = speed of the bird
L = length of the wings
now we have



now we have


To solve this problem it is necessary to apply the kinematic equations of motion.
By definition we know that the position of a body is given by

Where
Initial position
Initial velocity
a = Acceleration
t= time
And the velocity can be expressed as,

Where,

For our case we have that there is neither initial position nor initial velocity, then

With our values we have
, rearranging to find a,



Therefore the final velocity would be



Therefore the final velocity is 81.14m/s