Answer:
The associated SI unit of force and weight is the Newton, with 1 kilogram weighing 9.8 Newtons under standard conditions on the Earth's surface. However, in the US common units, the pound is the unit of force (and therefore weight). The pound is the widely used unit for commerce.
I'm not sure about the distance to the nearest star, but it's probably about 4 light-years (L-y).
1 L-y = 1.86 * 10E5 mi/sec * 3600 sec/hr * 24 hr/day * 365 day/yr
1 L-y = 5.9 *10E12 mi and 4 L-y = 2.3 *10E13 mi distance to star
2.3 * 10E13 mi / 900 mi/hr = 2.6 * 10E10 hr hours to star
2.6 * 10E10 hr / (24 hr/day) = 1.1 * 10E9 day days to star
1.1 * 10E9 day / 365 day/yr = 3 * 10E6 yr = 3 million years to star
Answer:
Acceleration of gravity on Noveria = 4.4 m/s²
Explanation:
Commander Shepard, an N7 spectre for Earth, weighs 799 N on the Earth's surface.
We have weight, W = mg
Acceleration due to gravity, g = 9.81m/s²
799 = m x 9.81
Mass of Shepard, m = 81.45 kg
She lands on Noveria, a distant planet in our galaxy, she weighs 356 N.
We have weight, W = mg'
356 = 81.45 xg'
Acceleration of gravity on Noveria, g' = 4.4 m/s²
A star is a large ball of gas that emits energy produced by nuclear reactions in the star's interior. Much of this energy is emitted as electromagnetic radiation, including visible light. Light emitted by stars enables other objects in the universe to be seen by reflection.
Answer:
3500N
Explanation:
Given parameters:
Mass of driver = 50kg
Speed = 35m/s
Time = 0.5s
Unknown:
Average force the seat belt exerts on her = ?
Solution:
The average force the seat belt exerts on her can be deduced from Newton's second law of motion.
F = mass x acceleration
So;
F = mass x 
F = 50 x
= 3500N