Answer
given,
initial speed of merry-go-round = 0 rad/s
final speed of merry-go-round = 1.5 rad/s
time = 7 s
Radius of the disk = 6 m
Mass of the merry-go-round = 25000 Kg
Moment of inertia of the disk


I = 450000 kg.m²
angular acceleration



we know,



The equation of the energy of a photon is E=h*f.
If we increase the Planck's constant h, the energy would increase.
For example, lets double the value of Planck's constant and name it H:
H=2*h. Now lets put that into the equation for energy that we will call E₂:
E₂=H*f=2*h*f=2*E.
So we can clearly see that E₂=2*E or that if we double Planck's constant, the energy also doubles.
Explanation:
It is given that,
Mass of an electron, 
Initial speed of the electron, 
Final speed of the electron, 
Distance, d = 5 cm = 0.05 m
(a) The acceleration of the electron is calculated using the third equation of motion as :



Force exerted on the electron is given by :



(b) Let W is the weight of the electron. It can be calculated as :



Comparison,


Hence, this is the required solution.
Answer: If one bulb goes out the other bulbs stay lit.
If there is a break in one branch of the circuit, current can still flow through the other branches.
Explanation:
-- Although it's not explicitly stated in the question,we have to assume that
the surface is frictionless. I guess that's what "smooth" means.
-- The total mass of both blocks is (1.5 + 0.93) = 2.43 kg. Since they're
connected to each other (by the string), 2.43 kg is the mass you're pulling.
-- Your force is 6.4 N.
Acceleration = (force)/(mass) = 6.4/2.43 m/s²<em>
</em> That's about <em>2.634 m/s²</em> <em>
</em>(I'm going to keep the fraction form handy, because the acceleration has to be
used for the next part of the question, so we'll need it as accurate as possible.)
-- Both blocks accelerate at the same rate. So the force on the rear block (m₂) is
Force = (mass) x (acceleration) = (0.93) x (6.4/2.43) = <em>2.45 N</em>.
That's the force that's accelerating the little block, so that must be the tension
in the string.