Answer:
linear charge density = -9.495 ×
C/m
Explanation:
given data
revolutions per second = 1.80 ×
radius = 1.20 cm
solution
we know that when proton to revolve around charge wire then centripetal force is require to be in orbit of radius around provide by electric force
so
- q × E = m × w² × r ..................1
- 9 ×
×
q = m × w² × r ............2
and w =
w =
w = 1.80 ×
×
w = 11304000 rad/s
so here from equation 2
- 9 ×
×
1.80 ×
= 1.672 ×
× 11304000² × 0.0120
linear charge density = -9.495 ×
C/m
Answer:
Both of them reach the lake at the same time.
Explanation:
We have equation of motion s = ut + 0.5at²
Vertical motion of James : -
Initial velocity, u = 0 m/s
Acceleration, a = g
Displacement, s = h
Substituting,
s = ut + 0.5 at²
h = 0 x t + 0.5 x g x t²

Vertical motion of John : -
Initial velocity, u = 0 m/s
Acceleration, a = g
Displacement, s = h
Substituting,
s = ut + 0.5 at²
h = 0 x t + 0.5 x g x t²

So both times are same.
Both of them reach the lake at the same time.
Answer:
change in internal energy 3.62*10^5 J kg^{-1}
change in enthalapy 5.07*10^5 J kg^{-1}
change in entropy 382.79 J kg^{-1} K^{-1}
Explanation:
adiabatic constant 
specific heat is given as 
gas constant =287 J⋅kg−1⋅K−1

specific heat at constant volume

change in internal energy 

change in enthalapy 

change in entropy



I think it’s C b/c it works for me
Answer : The momentum of ball is, 15 kg.m/s
Explanation :
Momentum : It is defined as the motion of a moving body. Or it is defined as the product of mass of velocity of an object.
Formula of momentum is:
where,
p = momentum = ?
m = mass = 1.5 kg
v = velocity = 10 m/s
Now put all the given values in the above formula, we get:
Therefore, the momentum of ball is 15 kg.m/s