A. Up and to the right
B. Put it in the opposite direction so it won’t go left
Answer:
a) 0.0288 grams
b) 
Explanation:
Given that:
A typical human body contains about 3.0 grams of Potassium per kilogram of body mass
The abundance for the three isotopes are:
Potassium-39, Potassium-40, and Potassium-41 with abundances are 93.26%, 0.012% and 6.728% respectively.
a)
Thus; a person with a mass of 80 kg will posses = 80 × 3 = 240 grams of potassium.
However, the amount of potassium that is present in such person is :
0.012% × 240 grams
= 0.012/100 × 240 grams
= 0.0288 grams
b)
the effective dose (in Sieverts) per year due to Potassium-40 in an 80- kg body is calculate as follows:
First the Dose in (Gy) = 
= 
= 
Effective dose (Sv) = RBE × Dose in Gy
Effective dose (Sv) = 
Effective dose (Sv) = 
Answer:
a) 3.7 m/s^2
b) 231.8 N
Explanation:
Let m1 be mass of the first object (m1 = 38.0 kg) and let m2 be the mass of the second object (m2 = 17.0 kg ). Let a be the acceleration of the two objects. Let F1 be the force of gravity exerted on m1 and F2 be the force of gravity exerted on m2. Let M = m1 +m2
a)
F1 = m1g and F2 = m2g
So Fnet = F1 + F2
Since the pulleys will move in different directions when accelerating...
Fnet = F1 - F2
M×a = m1g - mg2
M×a = g×(m1 -m2)
a = g×(m1 - m2)/M
a = 9.8×(38 - 17)/(38 + 17)
a = 3.7 m/s^2
b)
Looking at the part for m2
Fnet = T - m2g
-m2×a = T - m2g
T = m2(g - a)
T = 231.8 N
Answer:
The net force on the object is zero.
Explanation:
An object is moving with constant non-zero velocity. If velocity is constant, it means that the change in velocity is equal to 0. As a result, acceleration of the object is equal to 0. Net force is the product of mass and acceleration. Hence, the correct option is (d) "The net force on the object is zero".
Do you mean period of time, period as in English spelling, or a period that concerns the medical field?