Answer:
a) The concentration of drug in the bottle is 9.8 mg/ml
b) 0.15 ml drug solution + 1.85 ml saline.
c) 4.9 × 10⁻⁵ mol/l
Explanation:
Hi there!
a) The concentration of the drug in the bottle is 294 mg/ 30.0 ml = 9.8 mg/ml
b) The drug has to be administrated at a dose of 0.0210 mg/ kg body mass. Then, the total mass of drug that there should be in the injection for a person of 70 kg will be:
0.0210 mg/kg-body mass * 70 kg = 1.47 mg drug.
The volume of solution that contains that mass of drug can be calculated using the value of the concentration calculated in a)
If 9.8 mg of the drug is contained in 1 ml of solution, then 1.47 mg drug will be present in (1.47 mg * 1 ml/ 9.8 mg) 0.15 ml.
To prepare the injection, you should take 0.15 ml of the concentrated drug solution and (2.0 ml - 0.15 ml) 1.85 ml saline
c) In the injection there is a concentration of (1.47 mg / 2.0 ml) 0.735 mg/ml.
Let´s convert it to molarity:
0.735 mg/ml * 1000 ml/l * 0.001 g/mg* 1 mol/ 15000 g = 4.9 × 10⁻⁵ mol/l
Answer:
The answer to your question is: C. The specific latent heat of fusion
Explanation:
A. The specific latent heat of vaporization Specific latent heat of vaporization indicates the transition from liquid to vapor, but we are not looking for this definition. This answer is wrong.
B. The specific heat
indicates the amount of heat needed to increase the temperature of water 1°C, so this answer is wrong.
C. The specific latent heat of fusion
. This heat indicate the transition from solid ie to liquid, so this is the right answer.
D. The internal energy measures the energy of the molecules of a substance, so this answer is wrong.
chegg 2. What pattern did you observe measuring cell voltages with a silver electrode versus with a platinum/H2 electrode There is a difference of -0.786 V in silver
<h3>What is cell voltages ?</h3>
The difference in electric potential between two points, also known as voltage, electric potential difference, electric pressure, or electric tension, is what determines how much labor is required to move a test charge between the two sites in a static electric field. Volt is the name of the derived unit for voltage (potential difference) in the International System of Units. Joules per coulomb, or 1 volt equals 1 joule (of work) for 1 coulomb, is how work per unit charge is stated in SI units (of charge). The quantum Hall and Josephson effect was first employed in the 1990s, and most recently (in 2019), fundamental physical constants have been added for the definition of all SI units and derived units. Power and current were used in the previous SI definition for volt.
To learn more about cell voltages from the given link:
brainly.com/question/18938125
#SPJ4
Answer:
Option A. 1.8×10²⁴ molecules.
Explanation:
Data obtained from the question include:
Number of mole of methane = 3 moles
Number of molecules of methane =?
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ molecules.
Thus, 1 mole of methane equally contains 6.02×10²³ molecules.
With the above information in mind, we can obtain the number of molecules in 3 moles of methane as follow:
1 mole of methane contains 6.02×10²³ molecules.
Therefore, 3 moles of methane will contain = 3 × 6.02×10²³ = 1.8×10²⁴ molecules.
Thus, 3 moles of methane contains 1.8×10²⁴ molecules.