Answer:
Explanation:
Unclear question.
I infer you want a clear rendering, which reads;
A 258.4 g sample of ethanol (C2H5OH) was burned in a calorimetric pump using a Dewar glass. As a consequence, the water temperature rose to 4.20 ° C.
If the heat capacity of the water and the surrounding glass was 10.4 kJ / ° C, calculate the heat of combustion of one mole of ethanol.
Answer:
The common thing is the compound water
Explanation:
in condensation h2O is expelled while in hydrolysis water is used or added
Answer:
Percentage dissociated = 0.41%
Explanation:
The chemical equation for the reaction is:

The ICE table is then shown as:

Initial (M) 1.8 0 0
Change (M) - x + x + x
Equilibrium (M) (1.8 -x) x x
![K_a = \frac{[C_3H_6ClCO^-_2][H^+]}{[C_3H_6ClCO_2H]}](https://tex.z-dn.net/?f=K_a%20%20%3D%20%5Cfrac%7B%5BC_3H_6ClCO%5E-_2%5D%5BH%5E%2B%5D%7D%7B%5BC_3H_6ClCO_2H%5D%7D)
where ;


Since the value for
is infinitesimally small; then 1.8 - x ≅ 1.8
Then;




Dissociated form of 4-chlorobutanoic acid = 
Percentage dissociated = 
Percentage dissociated = 
Percentage dissociated = 0.4096
Percentage dissociated = 0.41% (to two significant digits)