Answer:
In a coiled spring, the particles of the medium vibrate to and fro about their mean positions at an angle of
A. 0° to the direction of propagation of wave
Explanation:
The waveform of a coiled spring is a longitudinal wave, which is made up of vibrations of the spring which are in the same direction as the direction of the wave's advancement
As the coiled spring experiences a compression force and is then released, it experiences a sequential movement of the wave of the compression that extends the length of the coiled spring which is then followed by a stretched section of the coiled spring in a repeatedly such that the direction of vibration of particles of the coiled is parallel to direction of motion of the wave
From which we have that the angle between the direction of vibration of the particles of the coiled spring and the direction of propagation of the wave is 0°.
Below are the 5 main indicators of chemical change.
Chemical change indicators:<span>
Color change
</span>Temperature change
Precipitate formation<span>
Odor
Bubble formation
I hope this helps!</span>
In a velocity-time graph, the area under the curve represents the distance.
The distance traveled from 10s to 18 s is

Final Answer: The distance traveled is 40 m from time 10 s to 18 s.
Answer:
C
Explanation:
The period of a pendulum is found by the equation: T = 2pi*sqrt(L/g). Let the original length be L and the original period be T. The length increased by a factor of 4, so it’s new length is 4L. We get that the new period is 2pi*sqrt(4L/g) = 2pi*2sqrt(L/g) = 4pi*sqrt(L/g). We can see that the period increased by a factor of 2 because the original period, T, equals 2pi*sqrt(L/g) and the new period is 4pi*sqrt(L/g) = 2(2pi*sqrt(L/g)) = 2T. Therefore, the new period is 2(1.4) = 2.8
I hope this helps! :)
At the start, the ball is at rest and therefore, u=0 m/s. As it leaves the bat, v= 50 m/s
From equations of motion, v=u+at = at (since u=o)
a=v/t = 50/0.04 = 121250 m/s^2
From Newton's second law,
F=ma = 145/1000 *1250 = 181.25 N