Answer:
Energy is found as:
E = 1.987·10⁻¹⁹ J
Explanation:
Energy of a single photon of infrared light can be found by using the following formula:

where
E = in Joules
h = Planck's constant = 6.627×10 ⁻³⁴ J
f = frequency in hertz
It can also be written as:

where
c = 2.998×10⁸ ms⁻¹
λ = wavelength
Wavelength is given in the question which is:
λ = 1×10⁻⁶m
Substitute all the values in the Energy formula

Displacement is your answer :)
Answer:
the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake
Explanation:
This problem can be solved using the kinematics relations, let's start by finding the final velocity of the acceleration period
v² = v₀² + 2 a₁ x
indicate that the initial velocity is zero
v² = 2 a₁ x
let's calculate
v =
v = 143.666 m / s
now for the second interval let's find the distance it takes to stop
v₂² = v² - 2 a₂ x₂
in this part the final velocity is zero (v₂ = 0)
0 = v² - 2 a₂ x₂
x₂ = v² / 2a₂
let's calculate
x₂ =
x₂ = 573 m
as the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake
In energy point of view, the larger stone had more potential energy before dropping. impacting the water, the larger one, having more kinetic energy which changed from potential energy, tranfered energy to the water and formed wave. the amplitude of the wave indicate the energy of the wave. more energy more amplitude.