We use a fundamental kinematic equation as follows:
V = Vo + g*t.
<span>Tr = (V-Vo)/g = (0-10)/-10 = 1 s. = </span><span>time to reach max. height </span>
<span>Tf = Tr = 1 s. = Fall time or time to fall back to edge of bldg. </span>
<span>3-Tr-Tf = 3-1-1 = 1 s. Below edge of bldg. </span>
<span>d = Vo*t + 0.5g*t^2. </span>
<span>d = 10*1 + 5*1^2 = 15 m. <---- OPTION C</span>
Answer:
The frequency of a sound wave is what your ear understands as pitch. A higher frequency sound has a higher pitch and the lower the period
Answer:
1.876 J
Explanation:
First, let’s calculate the compression of the spring from the Hooke’s law:
F=kx,
here, F=75 N is the force acted on the spring, k=1500 N⁄m is the force constant of the spring, x is the compression of the spring.
Then, we get:
x=F/k=(75 N)/(1500 N/m)=0.05 m.
Finally, we can find the potential energy stored in the spring:
PE=1/2 kx^2=1/2∙1500 N/m∙(0.05 m)^2=1.875 J.
correct my answer if it's wrong ^^
The spring constant is 181.0 N/m
Explanation:
We can solve the problem by applying the law of conservation of energy. In fact, the elastic potential energy initially stored in the compressed spring is completely converted into gravitational potential energy of the dart when the dart is at its maximum height. Therefore, we can write:

where the term on the left represents the elastic potential energy of the spring while the term on the right is the gravitational potential energy of the dart at maximum height, and where
k is the spring constant of the spring
x = 2.08 cm = 0.0208 m is the compression of the spring
m = 12.3 g = 0.00123 kg is the mass of the dart
is the acceleration due to gravity
h = 3.25 m is the maximum height of the dart
Solving for k, we find:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
Answer:
In a time-position graph (s-t graph):
slope = velocity
In a time-velocity graph (v-t graph):
slope = acceleration
area under graph = change in displacement (distance travelled)
In a time-acceleration graph (a-t graph):
area under graph = change in velocity