Answer:
66.4 m
Explanation:
To solve the problem, we can use the length contraction formula, which states that the length observed in the reference frame moving with the object (the rocket) is given by

where
is the proper length (the length measured from an observer at rest)
v is the speed of the object (the rocket)
c is the speed of light
Here we know
v = 0.85c
L = 35.0 m
So we can re-arrange the equation to find the length of the rocket at rest:

Current = charge per second
2 Coulombs per second = 2 Amperes
Potential difference = (current)x(resistance) in volts.
That's (2 Amperes) x (2 ohms).
That's how to do it.
I think you can find the answer now.
Answer:
The minimum total speed is 11.2km/s
Explanation:
We are been asked to find the escape velocity.
Escape velocity is defined as the minimum initial velocity that will take a body(projectile)away above the surface of a planet(earth) when it's projected vertically upwards.
The formula to calculate the escape velocity is Ve = √2gR
For the earth g = 9.8m/s2 , R = 6.4*10^6
Substituting into the equation Ve = √2*9.8*6.4*10^6 = 11.2*10^3m/s
=11.2km/s
66° N and 90° N
the area of the artic circle in the northern hemisphere