1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Neko [114]
3 years ago
13

Please help this is really important thanks

Physics
1 answer:
Juliette [100K]3 years ago
6 0
1. Giga is the largest
2. Stem-and-leaf
You might be interested in
A ball of mass m= 450.0 g traveling at a speed of 8.00 m/s impacts a vertical wall at an angle of θi =45.00 below the horizontal
Mkey [24]

Answer:

   F = 20.4 i ^

Explanation:

This exercise can be solved using the ratio of momentum and amount of movement.

     I = F t = Dp

Since force and amount of movement are vector quantities, each axis must be worked separately.

X axis

Let's look for speed

      cos 45 = vₓ / v

      vₓ = v cos 45

      vₓ = 8 cos 45

      vₓ = 5,657 m / s

We write the moment

Before the crash                          p₀ = m vₓ

After the shock                            p_{f} = -m vₓ

The variation of the moment      Δp = mvₓ - (-mvₓ) = 2 m vₓ

The impulse on the x axis           Fₓ t = Δp

       

        Fₓ = 2 m vₓ / t

        Fx = 2 0.450 5.657 / 0.250

        Fx = 20.4 N

We perform the same calculation on the y axis

       sin  45 = vy / v

       vy = v sin 45

       vy = 8 sin 45

       vy = 5,657 m / s

We calculate the initial momentum   po = m v_{y}

Final moment                                      p_{f} = m v_{y}

Variations moment                             Δp = mv_{y} - mv_{y} = 0

Force in the Y-axis                             F_{y} = 0

Therefore the total force is

       F = fx i ^ + Fyj ^

       F = Fx i ^

       F = 20.4 i ^

3 0
4 years ago
a particle is moving with shm of period 8.0s and amplitude 5.0cm. find (a) the speed of particle when it is 3.0m from the centre
Fudgin [204]

Answer:

a) speed=\pi cm/s

b) v_{max}=\frac{5\pi}{4} cm/s

c) a_{max}=\frac{5\pi^{2}}{16} cm/s^{2}

Explanation:

The very first thing we must do in order to solve this problem is to find an equation for the simple harmonic motion of the given particle. Simple harmonic motion can be modeled with the following formula:

y=Asin(\omega t)

where:

A=amplitude

\omega= angular frequency

t=time

we know the amplitude is:

A=5.0cm

and the angular frequency can be found by using the following formula:

\omega=\frac{2\pi}{T}

so our angular frequency is:

\omega=\frac{2\pi}{8s}

\omega=\frac{\pi}{4}

so now we can build our equation:

y=5sin(\frac{\pi}{4} t)

we need to find the speed of the particle when it is 3m from the centre of its motion, so we need to find the time t when this will happen. We can use the equation we just found to get this value:

y=5sin(\frac{\pi}{4} t)

3=5sin(\frac{\pi}{4} t)

so we solve for t:

sin(\frac{\pi}{4} t)=\frac{3}{5}

\frac{\pi}{4} t=sin^{-1}(\frac{3}{5})

t=\frac{4}{\pi}sin^{-1}(\frac{3}{5})

you can directly use this expression as the time or its decimal representation:

t=0.81933

since we need to find the speed of the particle at that time, we will need to get the derivative of the equation that represents the particle's position, so we get:

y=5sin(\frac{\pi}{4} t)

y'=5cos(\frac{\pi}{4} t)*\frac{\pi}{4}

which simplifies to:

y' =\frac{5\pi}{4}cos(\frac{\pi}{4} t)

and we can now substitute the t-value we found previously, so we get:

y'=\frac{5\pi}{4}cos(\frac{\pi}{4} (0.81933))

y'=\pi

so its velocity at that point is \pi cm/s

b) In order to find the maximum velocity we just need to take a look at the velocity equation we just found:

y' =\frac{5\pi}{4}cos(\frac{\pi}{4} t)

its amplitude will always give us the maximum velocity of the particle, so in this case the amplitude is:

A=\frac{5\pi}{4}

so:

v_{max}=\frac{5\pi}{4} cm/s

c) we can use a similar procedure to find the maximum acceleration of the particle, we just need to find the derivative of the velocity equation and determine its amplitude. So we get:

y'= \frac{5\pi}{4}cos(\frac{\pi}{4} t)

We can use the chain rule again to find this derivative so we get:

y" =-\frac{5\pi}{4}sin(\frac{\pi}{4} t)*(\frac{pi}{4})

so when simplified we get:

y"=-\frac{5\pi^{2}}{16}sin(\frac{\pi}{4} t)

its amplitude is:

A=\frac{5\pi^{2}}{16}

so its maximum acceleration is:

a_{max}=\frac{5\pi^{2}}{16} cm/s^{2}

7 0
3 years ago
If the ankylosaurs starts running and accelerates at 1.3m/s^2 for 3 seconds how far does he make it before the velociraptor catc
sveta [45]

Acceleration is the change of velocity, and velocity is the change of distance. The opposite of finding change, or differentiation, is integration.

Acceleration = 1.3 m/s²

Velocity: ∫ 1.3 dx = 1.3x + c m/s

Distance: ∫ 1.3x dx = 1.3x²/2 + c m

Distance run: 1.3*3²/2 = 5.85 m

<em>What</em><em> </em><em>bad</em><em> </em><em>thing</em><em> </em><em>happened</em><em>?</em>

7 0
3 years ago
In introductory physics laboratories, a typical Cavendish balance for measuring the gravitational constant G uses lead spheres o
SVETLANKA909090 [29]

Answer:

F = 7.7*10^{-10}N

Explanation:

You need to be careful with units for this problem. The force will be:

F =\frac{K*m1*m2}{d^2}

F=\frac{6.67259 * 10^{-11}*1.56*21.1*10^{-3}}{(5.34*10^{-2})^2}

F=7.7*10^{-10}N

8 0
3 years ago
What is created when charged particles are moving in a single direction and path?​
photoshop1234 [79]

I think it is Drift Velocity.

4 0
4 years ago
Other questions:
  • lightning sometimes happens between clouds. suggest a possible way that a discharge can occur between clouds
    5·1 answer
  • How many protons does a fluortine atom have
    15·2 answers
  • How are temp and pressure related
    9·1 answer
  • A system is a group of objects that’s analyzed as one unit. Consider a car moving along a road that has a flat section and a hil
    6·1 answer
  • Every year, new records in track and field events are recorded. Let's take an historic look back at some exciting races.
    10·1 answer
  • Approximately how much energy is contained in 1 g of matter?
    10·1 answer
  • A kayaker moves 32 meters northward then 6 meters southward finally 24 meters northward
    15·2 answers
  • A set of pulleys is used to lift a piano weighing 1,000 newtons. The piano is lifted 3 meters in 120 seconds. How much power was
    15·1 answer
  • If mass of the ball is 5kg how to calculate the potential energy?! ​
    9·1 answer
  • Sound travels Faster through _____________ mediums.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!