Answer:
A
Explanation:
The iron corrodes so it oxidized
PH= −log
10
[H
+
]
= −log
10
(0.001)
= −log
10
(10
−3
)
= −(−3)log
10
10
pH=3.
01
Bonding Continuum<span>. Trends in the Periodic Table and </span>Bonding<span>. Ionic </span>Bonds. Ionic bonds<span> are formed between atoms with a large difference in electronegativities. ... The ionic </span>bond<span> is the electrostatic force of attraction between a positive and negative ion.</span>
Answer:
Gold is a metal, more specifically a transition metal, whereas Oxygen is a nonmetal, more specifically a reactive nonmetal. Using this information, you can compare and contrast metals, nonmetals, and metalloids.
Metals are:
Shiny
High melting point
Mostly silver or gray in color
Mostly solids at room temperature – Mercury (Hg) is a liquid at room temperature
Malleable – able to be hammered into a thin sheet
Ductile – able to be drawn/pulled into a wire
Good conductors of heat and electricity
Nonmetals are:
Dull
Low melting point
Brittle – break easily
Not malleable
Not ductile
Poor conductors of heat and electricity
Metalloids are:
Found on the “zig-zag” line on the Periodic Table of Elements
Have properties of both metals and nonmetals
Can be shiny or dull
Semiconductors – able to conduct electricity under certain conditions
Explanation:
Reccomend this site for questions llike these: https://ptable.com/#Properties
To determine the k for the second condition, we use the Arrhenius equation which relates the rates of reaction at different temperatures. We do as follows:
ln k1/k2 = E / R (1/T2 - 1/T1) where E is the activation energy and R universal gas constant.
ln 1.80x10^-2 / k2 = 80000 / 8.314 ( 1/723.15 - 1/593.15)
k2 = 0.3325 L / mol-s