Answer:
1.8 moles of O₂
Explanation:
The balance chemical equation for said double replacement (photosynthesis) reaction is as follow;
6 CO₂ + 6 H₂O → C₆H₁₂O₆ + 6 O₂
According to balance chemical equation,
6 moles of O₂ are produced by = 6 moles of CO₂
So,
1.8 moles of O₂ will be produced by = X moles of O₂
Solving for X,
X = 1.8 mol × 6 mol / 6 mol
X = 1.8 moles of O₂
Stoichiometric problems in which moles are given and moles or other reactant or product asked are the simplest problems. One should only write the balanced chemical equation and perform above method to find the required moles.
<span>Heat is the total energy of molecular motion in a substance while temperature is a measure of the average energy of molecular motion in a substance. Heat energy depends on the speed of the particles, the number of particles (the size or mass), and the type of particles in an object.</span>
Answer:
(2) The lowest energy orbits are those closest to the nucleus.
Explanation:
In the Bohr theory the electrons describe circular orbits around the nucleus of the atom without radiating energy, therefore to maintain the circular orbit, the force that the electron experiences, that is, the coulombian force due to the presence of the nucleus, must be equal to the centripetal force.
The electron only emits or absorbs energy in the jumps from one allowed orbit to another, with only one jump occurring at a time, from layer K (n = 1) to layer L (n = 2), without going through intermediate orbits. In said change it emits or absorbs a photon whose energy is the difference in energy between both levels.
In Bohr's model, it is stipulated that the energy of the electron is greater the greater the radius r, so the lowest energy orbits are those closest to the nucleus.
Answer:
Can be produced 288mL of SO₂
Explanation:
Based in the reaction:
P₄S₃ + 8O₂ → P₄O₁₀ + 3SO₂
<em>Where 1 mole of tetraphosphorus trisulfide reacts producing 3 moles of sulfur dioxide gas.</em>
0.869g of tetraphosphorus trisulfide (Molar mass of P₄S₃: 220.09g/mol) are:
0.869g P₄S₃ ₓ (1mol / 220.09g) = 3.948x10⁻³ moles of P₄S₃
As 3 moles of SO₂ are produced per mole of P₄S₃:
3.948x10⁻³ moles of P₄S₃ ₓ (3 moles SO₂ / 1 mole P₄S₃) = 0.0118 moles SO₂
Using PV = nRT
V = nRT / P
<em>Where n are 0.0118 moles, R gas constant (0.082atmL/molK), T absolute temperature (21.0°C + 273.15K = 294.15K), and P pressure (751torr / 760 = 0.988atm).</em>
Replacing:
V = 0.0118molₓ0.082atmL/molKₓ294.15K / 0.988atm
V = 0.288L = 288mL
<em />
The answer is (4) a total of eight valence electrons. The valence electrons are defined as electrons that are mostly like to be involved in a chemical reaction. So the Argon is stable because the 8 valence electrons is already a stable state.