1. From grams -> mole:
=grams given x 1 mol/molar mass
So 150 g Cu x 1 mol Cu/63.546 g Cu = 2.4 mol Cu
2. From mole -> atoms
=number of mol x 6.022x10^22 atoms/1 mol
So 2.4 mol Cu x 6.022x10^22 atoms Cu/1 mol Cu = 1.4 x 10^24 atoms Cu
Answer:
5
Explanation:
Sorry, don't have one
<u><em>Hope this helps and I get brainliest <3</em></u>
Answer: The correct statement is (A new substance is formed and the process can usually NOT be undone.)
Explanation:
A chemical reaction is simply defined as the reaction between two or more elements in which a new substance is formed and the process can usually not be undone. Different types of chemical reaction includes:
-- combination reaction: this occurs when two or more reactants form a product. For example: In the burning of coal, It combines with oxygen to produce carbon dioxide. Also in the burning of wood, carbon dioxide is given off and ashes are formed. Because new substance is being formed, they often can't be undone. The ashes formed can't be changed back into wood. Other types of chemical reaction are listed below.
-- Decomposition reaction
-- Single displacement reaction
-- Double displacement reaction
-- combustion reaction
-- Redox reaction
For the product of a chemical reaction to be undone (reversed), it has to undergo another chemical process different from the one that produced it.
a) before addition of any KOH :
when we use the Ka equation & Ka = 4 x 10^-8 :
Ka = [H+]^2 / [ HCIO]
by substitution:
4 x 10^-8 = [H+]^2 / 0.21
[H+]^2 = (4 x 10^-8) * 0.21
= 8.4 x 10^-9
[H+] = √(8.4 x 10^-9)
= 9.2 x 10^-5 M
when PH = -㏒[H+]
PH = -㏒(9.2 x 10^-5)
= 4
b)After addition of 25 mL of KOH: this produces a buffer solution
So, we will use Henderson-Hasselbalch equation to get PH:
PH = Pka +㏒[Salt]/[acid]
first, we have to get moles of HCIO= molarity * volume
=0.21M * 0.05L
= 0.0105 moles
then, moles of KOH = molarity * volume
= 0.21 * 0.025
=0.00525 moles
∴moles HCIO remaining = 0.0105 - 0.00525 = 0.00525
and when the total volume is = 0.05 L + 0.025 L = 0.075 L
So the molarity of HCIO = moles HCIO remaining / total volume
= 0.00525 / 0.075
=0.07 M
and molarity of KCIO = moles KCIO / total volume
= 0.00525 / 0.075
= 0.07 M
and when Ka = 4 x 10^-8
∴Pka =-㏒Ka
= -㏒(4 x 10^-8)
= 7.4
by substitution in H-H equation:
PH = 7.4 + ㏒(0.07/0.07)
∴PH = 7.4
c) after addition of 35 mL of KOH:
we will use the H-H equation again as we have a buffer solution:
PH = Pka + ㏒[salt/acid]
first, we have to get moles HCIO = molarity * volume
= 0.21 M * 0.05L
= 0.0105 moles
then moles KOH = molarity * volume
= 0.22 M* 0.035 L
=0.0077 moles
∴ moles of HCIO remaining = 0.0105 - 0.0077= 8 x 10^-5
when the total volume = 0.05L + 0.035L = 0.085 L
∴ the molarity of HCIO = moles HCIO remaining / total volume
= 8 x 10^-5 / 0.085
= 9.4 x 10^-4 M
and the molarity of KCIO = moles KCIO / total volume
= 0.0077M / 0.085L
= 0.09 M
by substitution:
PH = 7.4 + ㏒( 0.09 /9.4 x 10^-4)
∴PH = 8.38
D)After addition of 50 mL:
from the above solutions, we can see that 0.0105 mol HCIO reacting with 0.0105 mol KOH to produce 0.0105 mol KCIO which dissolve in 0.1 L (0.5L+0.5L) of the solution.
the molarity of KCIO = moles KCIO / total volume
= 0.0105mol / 0.1 L
= 0.105 M
when Ka = KW / Kb
∴Kb = 1 x 10^-14 / 4 x 10^-8
= 2.5 x 10^-7
by using Kb expression:
Kb = [CIO-] [OH-] / [KCIO]
when [CIO-] =[OH-] so we can substitute by [OH-] instead of [CIO-]
Kb = [OH-]^2 / [KCIO]
2.5 x 10^-7 = [OH-]^2 /0.105
∴[OH-] = 0.00016 M
POH = -㏒[OH-]
∴POH = -㏒0.00016
= 3.8
∴PH = 14- POH
=14 - 3.8
PH = 10.2
e) after addition 60 mL of KOH:
when KOH neutralized all the HCIO so, to get the molarity of KOH solution
M1*V1= M2*V2
when M1 is the molarity of KOH solution
V1 is the total volume = 0.05 + 0.06 = 0.11 L
M2 = 0.21 M
V2 is the excess volume added of KOH = 0.01L
so by substitution:
M1 * 0.11L = 0.21*0.01L
∴M1 =0.02 M
∴[KOH] = [OH-] = 0.02 M
∴POH = -㏒[OH-]
= -㏒0.02
= 1.7
∴PH = 14- POH
= 14- 1.7
= 12.3