Answer:
-60
It is -60 because if it takes away 6 points for each cone you hit and you hit 10, then it would be -60 times 10, which equals -60.
General Idea:
Domain of a function means the values of x which will give a DEFINED output for the function.
Applying the concept:
Given that the x represent the time in seconds, f(x) represent the height of food packet.
Time cannot be a negative value, so

The height of the food packet cannot be a negative value, so

We need to replace
for f(x) in the above inequality to find the domain.
![-15x^2+6000\geq 0 \; \; [Divide \; by\; -15\; on\; both\; sides]\\ \\ \frac{-15x^2}{-15} +\frac{6000}{-15} \leq \frac{0}{-15} \\ \\ x^2-400\leq 0\;[Factoring\;on\;left\;side]\\ \\ (x+200)(x-200)\leq 0](https://tex.z-dn.net/?f=%20-15x%5E2%2B6000%5Cgeq%200%20%5C%3B%20%5C%3B%20%20%5BDivide%20%5C%3B%20by%5C%3B%20-15%5C%3B%20on%5C%3B%20both%5C%3B%20sides%5D%5C%5C%20%5C%5C%20%5Cfrac%7B-15x%5E2%7D%7B-15%7D%20%2B%5Cfrac%7B6000%7D%7B-15%7D%20%5Cleq%20%5Cfrac%7B0%7D%7B-15%7D%20%5C%5C%20%5C%5C%20x%5E2-400%5Cleq%200%5C%3B%5BFactoring%5C%3Bon%5C%3Bleft%5C%3Bside%5D%5C%5C%20%5C%5C%20%28x%2B200%29%28x-200%29%5Cleq%200%20)
The possible solutions of the above inequality are given by the intervals
. We need to pick test point from each possible solution interval and check whether that test point make the inequality
true. Only the test point from the solution interval [-200, 200] make the inequality true.
The values of x which will make the above inequality TRUE is 
But we already know x should be positive, because time cannot be negative.
Conclusion:
Domain of the given function is 
Answer:
A.
Step-by-step explanation:
-3√45 + 3√20 = -3√(9 · 5) + 3√(4 · 5) =
= -3√(3² · 5) + 3√(2² · 5) =
= -3 · 3√5 + 3 · 2√5 =
= -9√5 + 6√5 = -3√5 ← the end
Answer:
$507.00.
Step-by-step explanation:
First, converting R percent to r a decimal
r = R/100 = 6.5%/100 = 0.065 per year,
then, solving our equation
I = 1300 × 0.065 × 6 = 507
I = $ 507.00
The simple interest accumulated
on a principal of $ 1,300.00
at a rate of 6.5% per year
for 6 years is $ 507.00.