Same time
..................
Answer:
material work function is 0.956 eV
Explanation:
given data
red wavelength 651 nm
green wavelength 521 nm
photo electrons = 1.50 × maximum kinetic energy
to find out
material work function
solution
we know by Einstein photo electric equation that is
for red light
h ( c / λr ) = Ф + kinetic energy
for green light
h ( c / λg ) = Ф + 1.50 × kinetic energy
now from both equation put kinetic energy from red to green
h ( c / λg ) = Ф + 1.50 × (h ( c / λr ) - Ф)
Ф =( hc / 0.50) × ( 1.50/ λr - 1/ λg)
put all value
Ф =( 6.63 ×
(3 ×
) / 0.50) × ( 1.50/ λr - 1/ λg)
Ф =( 6.63 ×
(3 ×
) / 0.50 ) × ( 1.50/ 651×
- 1/ 521 ×
)
Ф = 1.5305 ×
J × ( 1ev / 1.6 ×
J )
Ф = 0.956 eV
material work function is 0.956 eV
Answer:
The acceleration of the ball is 666.67 m/s²
Explanation:
It is given that,
Mass of the baseball, m = 0.15 kg
Applied force to it, F = 100 N
We need to find the acceleration of the ball. It can be calculated using Newton's second law of motion as :
F = ma



So, the acceleration of the ball is 666.67 m/s². Hence, this is the required solution.
The correct answer is: Option (3) 9.8 N/kg
Explanation:
According to Newton's Law of Gravitation:
--- (1)
Where G = Gravitational constant = 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²
m = Mass of the body = 2 kg
M = Mass of the Earth = 5.972 × 10²⁴ kg
R = Distance of the object from the center of the Earth = Radius of the Earth + Object's distance from the surface of the Earth = (6371 * 10³) + 3.0 = 6371003 m
Plug in the values in (1):
(1)=> 
Now that we have force strength at the location, we can use:
Force = mass * gravitational-field-strength
Plug in the values:
19.63 = 2.0 * gravitational-field-strength
gravitational-field-strength = 19.63/2 = 9.82 N/kg
Hence the correct answer is Option (3) 9.8 N/kg
Area under the line and above the axis on a velocity - time graph represents the displacement of the object.