<span>A sheet of copper could cause the object to lose the most amount of heat. Copper is an essential element and a good conductor of heat. Heat can transfer from one end of a piece of copper to the other end.</span>
PART A)
By Snell's law we know that

here we know that



now from above equation we have


so it will refract by angle 39.3 degree
PART B)
Here as we can see that image formed on the other side of lens
So it is a real and inverted image
Also we can see that size of image is lesser than the size of object here
Here we can use concave mirror to form same type of real and inverted image
PART C)
As per the mirror formula we know that



so image will form at 30 cm from mirror
it is virtual image and smaller in size
Are you sure you weren't given any options? Basically the electrical components, e.g wires and bulbs will be conductors, and the part comprising the outer casing, e.g plastic, glass, will be insulators
Answer:
Some examples of things that stick together include clothes after they were in the dryer because a charge builds up on the objects, causing them to attract to each other. Things that don't stick together may include two neutral objects, like two pieces of neutral paper. ... If they repel, then they are the same charge.
Explanation:
<span>7.7 m/s
First, determine the acceleration you subject the sled to. You have a mass of 15 kg being subjected to a force of 180 N, so
180 N / 15 kg = 180 (kg m)/s^2 / 15 kg = 12 m/s^2
Now determine how long you pushed it. For constant acceleration the equation is
d = 0.5 A T^2
Substitute the known values getting,
2.5 m = 0.5 12 m/s^2 T^2
2.5 m = 6 m/s^2 T^2
Solve for T
2.5 m = 6 m/s^2 T^2
0.41667 s^2 = T^2
0.645497224 s = T
Now to get the velocity, multiply the time by the acceleration, giving
0.645497224 s * 12 m/s^2 = 7.745966692 m/s
After rounding to 2 significant figures, you get 7.7 m/s</span>