The angles in the triangle are 91 degrees, 53 degrees and 36 degrees respectively.
<h3>What is the cosine rule?</h3>
From the cosine rule we know that;
c^2 = a^2 + b^2 - 2abcosC
Since;
a = 0.47 m
b = 0.62 m
c = 0.78 m
Then;
(0.78)^2 = (0.47)^2 + (0.62)^2 - 2(0.47 * 0.62)cosC
0.61 = 0.22 + 0.38 - 0.58 cosC
0.61 - ( 0.22 + 0.38) = - 0.58 cosC
0.01 = - 0.58 cosC
C = cos-1(0.01/-0.58)
C = 91 degrees
Using the sine rule;
b/Sin B = c/Sin C
0.62/sinB = 0.78/sin 91
0.62/Sin B = 0.78
B = sin-1 (0.62//0.78)
B = 53 degrees
Angle A is obtained from the sum of angles in a triangle;
180 - (91 + 53)
A = 36 degrees
Learn more about triangle:brainly.com/question/2773823
#SPJ1
Answer:
The answer is B.
Explanation:
They are in control of the experiment, they can change it the variables to better help the experiment.
By the help of newtons law of gravitation we can derive keplers third law of planetary motion.
Answer:
The time it will take for the object to hit the ground will be 4.
Explanation:
You have:
h(t)=−16t²+v0*t+h0
Being v0 the initial velocity (54 ft/s) and h0 the initial height (40 ft) and replacing you get:
h(t)=−16t²+54*t+40
To know how long it will take for the object to touch the ground, the height h(t) must be zero. So:
0=−16t²+54*t+40
Being a quadratic function or parabola: f (x) = a*x² + b*x + c, the roots or zeros of the quadratic function are those values of x for which the expression is 0. Graphically, the roots correspond to the points where the parabola intersects the x axis. To calculate the roots the expression is used:

In this case you have that:
Replacing in the expression of the calculation of roots you get:
Expresion (A)
and
Expresion (B)
Solving the Expresion (A):

Solving the Expresion (B):

These results indicate the time it will take for the object to hit the ground can be -5/8 and 4. Since the time cannot be negative, then <u><em>the time it will take for the object to hit the ground will be 4.</em></u>