Answer:
53.7 grams of HNO3 will be produced
Explanation:
Step 1: Data given
Mass of NO2 = 59.0 grams
Molar mass NO2 = 46.0 g/mol
Step 2: The balanced equation
3NO2 + H2O→ 2HNO3 + NO
Step 3: Calculate moles NO2
Moles NO2 = 59.0 grams / 46.0 g/mol
Moles NO2 = 1.28 moles
Step 4: Calculate moles HNO3
For 3 moles NO2 we need 1 mol H2O to produce 2 moles HNO3 and 1 mol NO
For 1.28 moles NO2 we'll have 2/3 * 1.28 =0.853 moles HNO3
Step 7: Calculate mass HNO3
Mass HNO3 = 0.853 moles * 63.01 g/mol
Mass HNO3 = 53.7 grams
53.7 grams of HNO3 will be produced
There would be 2 which would be on the oxygen
Answer: 2.71 moles of solute for every 1 kg of solvent.
Explanation: As you know, the molality of a solution tells you the number of moles of solute present for every 1 kg of the solvent.This means that the first thing that you need to do here is to figure out how many grams of water are present in your sample. To do that, use the density of water.500.mL⋅1.00 g1mL=500. g Next, use the molar mass of the solute to determine how many moles are present in the sample.115g⋅1 mole NanO385.0g=1.353 moles NaNO3So, you know that this solution will contain 1.353moles of sodium nitrate, the solute, for 500. g of water, the solvent.In order to find the molality of the solution, you must figure out how many moles of solute would be present for 1 kg=103g of water.103g water⋅1.353 moles NaNO3500.g water=2.706 moles NaNO3You can thus say that the molality of the solution is equal to molality=2.706 mol kg−1≈2.71 mol kg−1 The answer is rounded to three sig figs.
Answer:
1. C+ ---- O-
2. O+ ---- Cl-
3. O+ ----- F-
4. C+ ----- N-
5. Cl- ----- C+
6. S- ----- H+
7. S+ ----- Cl -
Explanation:
Electronegativity determines the polarity . There may be two atoms in a bond with high electronegativity, in such cases the positive charge is given to atom with comparatively lower electronegativity. Electronegativity determines the easiness with which an atom attract electrons in a chemical bond. A polar bond is formed when the difference in the electronegativity of two combining atoms is between 0.4 and 1.7. The correct direction is
1. C+ ---- O-
2. O+ ---- Cl-
3. O+ ----- F-
4. C+ ----- N-
5. Cl- ----- C+
6. S- ----- H+
7. S+ ----- Cl -