1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
crimeas [40]
3 years ago
9

The force on a dropped apple hitting the ground depends upon

Physics
1 answer:
yulyashka [42]3 years ago
5 0

Answer:

F=ma

Explanation:

Force = mass * acceleration

You might be interested in
What is the difference between mass and density?
Fantom [35]
Mass relates to how much space something takes up (size) density relates to weight
8 0
3 years ago
Read 2 more answers
What are the three main types of rocks?​
aksik [14]

metamorphic, sedimentary, igneous

5 0
3 years ago
Read 2 more answers
Before the student releases the cart by cutting the tinsel string, what forces are acting on the cart?
Naya [18.7K]

Answer: TENSION and WEIGHT

Explanation:

Force experienced by the spring is called TENSION while the WEIGHT is the gravitational pull on the body towards the earth surface. Therefore the forces acting on the cart are TENSION and WEIGHT(weight acts downwards (along negative y-axis) while the TENSION upward(along positive y-axis).

5 0
3 years ago
Four copper wires of equal length are connected in series. Their cross-sectional areas are 0.7 cm2 , 2.5 cm2 , 2.2 cm2 , and 3 c
Travka [436]

Answer:

22.1 V

Explanation:

We are given that

A_1=0.7 cm^2=0.7\times 10^{-4} m^2

A_2=2.5 cm^2=2.5\times 10^{-4} m^2

A_3=2.2 cm^2=2.2\times 10^{-4} m^2

A_4=3 cm^2=3\times 10^{-4} m^2

Using 1cm^2=10^{-4} m^2

We know that

R=\frac{\rho l}{A}

In series

R=R_1+R_2+R_3+R_4

R=\frac{\rho l}{A_1}+\frac{\rho l}{A_2}+\frac{\rho l}{A_3}+\frac{\rho l}{A_4}

R=\frac{\rho l}{\frac{1}{A_1}+\frac{1}{A_2}+\frac{1}{A_3}+\frac{1}{A_4}}

Substitute the values

R=\rho A(\frac{1}{0.7\times 10^{-4}}+\frac{1}{2.5\times 10^{-4}}+\frac{1}{2.2\times 10^{-4}}+\frac{1}{3\times 10^{-4}})

R=\rho l(2.62\times 10^4)

V=145 V

I=\frac{V}{R}=\frac{145}{\rho l(2.62\times 10^4)}

Voltage across the 2.5 square cm wire=IR=I\times \frac{\rho l}{A_2}

Voltage across the 2.5 square cm wire=\frac{145}{\rho l(2.62\times 10^4)}\times \frac{\rho l}{2.5\times 10^{-4}}=22.1 V

Voltage across the 2.5 square cm wire=22.1 V

6 0
3 years ago
A student wish to measure the gravitational acceleration g. She does it by releasing a small lead ball from rest and measures th
Goryan [66]

Answer:

(9.64 +- 0.86) m/s^2

Explanation:

The generic motion equation for constant acceleration is

x = X0 + v0 * t + \frac{1}{2}*a * t^2

Where

X0: initial position

v0: initial speed

a: acceleration

t: time

If the object has an initial speed of zero, and the frame of reference is set conveniently so that the object initial position is zero, the equation simplifies to:

x = \frac{1}{2}*a * t^2

And the acceleration can be obtained as:

a = 2*\frac{x}{t^2}

Where x is the distance fallen and a = g.

So, with the data x = (100.0 +- 0.03) mm and t = (144 +- 3) ms we can calculate

g = 2*\frac{100}{144^2} = 9.64e-3 \frac{mm}{ms^2} = 9.64 \frac{m}{s^2}

For the uncertainty we have to calculate the relative uncertainties first

For the distance (100 * 0.3)/100 = 0.3%

For the time (100 * 3)/144 = 2.08%

For multiplications or divisions the relative uncertainties are added

0.3% + 2.08% + 2.08% = 4.46%

We convert this into absolute uncertainty:

(9.64e-3 * 4.46)/100 = 0.00043 mm/(ms^2)

Finally, this is multiplied by a constant scalar, so:

2 * 0.00043 mm/(ms^2) = 0.00086 mm/(ms^2)

We convert the units

0.86 m/(s^2)

And the measurement is (9.64 +- 0.86) m/s^2

A better method is putting the ball in a ramp instead of a free fall, that way the fall is longer and the effect of time measuring uncertainty is reduced.

5 0
3 years ago
Other questions:
  • In electroplating, the object to be plated is which part of an electrolytic cell? cathode or anode
    8·2 answers
  • what is the difference between Earth's magnetic and geographic poles? how do navigators take advantage of this?
    11·1 answer
  • Solve this.
    8·1 answer
  • A box weighing 4.0 N is lifted 3.0 meters. How much work is done on the box?
    14·1 answer
  • two boys started runing stright to ward each other from two pionts 100m aparts.one run at speed of 4m/s and other at 6m/s.how fa
    15·1 answer
  • What does it mean when there is a curved line going upwards on a graph?<br><br>science 8th grade :)
    10·1 answer
  • Whats the temperature -15°F in degrees Celsius?
    5·2 answers
  • No work is done on an object when a force acting on the object does not move it. True False
    13·1 answer
  • If we throw a tennis ball and a bowling ball, would the bowling ball require more or less force than the tennis ball to reach th
    9·1 answer
  • In which of the following situations is the Doppler Effect absent?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!