(a) the weight of the fish is:

and this is the force that stretches the spring by

. So, we can use Hook's law to find the constant of the spring:

(b) The fish is pulled down by 2.8 cm = 0.028 m more, so now the total stretch of the spring is

But this is also the amplitude of the new oscillation, because this is the maximum extension the spring can get, so A=6.5 cm.
The angular frequency of oscillation is given by:

and so the frequency is given by
Answer:

Explanation:
To solve this equation we will have to consider that the bubble is filled with an Ideal Gas and as such we can use the Ideal Gas Law

Where
= Pressure
= Volume
= Moles
= Ideal Gas Constant
= Temperature
Now since we know that the value for the temperature and moles is constant we can simply use Boyles Law for the two states

Let us look at the two states
State 1 (at top)
Pressure = 
Volume = 
State 2 (at bottom)
Pressure = 
Where
= Density of liquid (1000 kg/m³)
= Acceleration due to gravity (9.8 m/s²)
= Height of liquid (0.200 m)
Pressure = 
Volume = 
Inputting these values into the Boyles Law

18.5164213 if you divide them both you get that number so the volceity is the number shown above.
Answer: 4 times grease
Explanation: Force F= C · q1·q2/r². C = Coulomb's constant.
If charges double you have 2q1 and 2q2.
b is your answers in this thread