I think it's three days. I read it in assignment potion before but it's kinds fuzzy but I believe it's three days. Hopefully thats correct.
Answer:
25 m/s
Explanation:
This question can be solved using equation of motion

where
v is the final velocity
u is the initial velocity
s is the distance covered while moving from initial to final velocity
a is the acceleration
_____________________________________________
Given
box moved for distance of 62.5 m
Friction slows the box at –5.0 m/s2----> this statement means that there is deceleration , speed of truck decreases by 5 m/s in every second until the box comes to rest. Friction causes this deceleration.
thus in this problem
a = -5.0 m/s2
V = 0 as body came to rest due to friction deceleration
u the initial velocity we have to find
the initial velocity of box will be the same as speed of truck, as the box was in the truck and hence box will pick the speed of truck.
so if we find speed of box, we will be able get sped of truck as well.
using equation of motion

Thus, initial speed with the truck was travelling was 25 m/s.
To calculate the force of impact F, first lets calculate the acceleration a of the ball:
a=v/t where v is the velocity of the ball and t is time
a=32/0.8=40 m/s²
To get the force F we need the Newtons second law:
F=m*a where m is the mass of the ball and a is the acceleration.
F=m*a= 0.2*40 = 8 N
So the impact force is F= 8 N.
Answer:
d = 69 .57 meter
Explanation:
First case
Speed of car ( v ) = 20.5 mi/h = 9.164 M/S
distance ( d ) = 11.6 meter ( m = mass of the car )
Work done = 0.5 m v² = 0.5 * 9.164² * m J = 41.99 m J
Force = ( workdone /distance ) = ( 41.99 m / 11.6 ) = 3.619 m N
Second case
v = 50.2 mi/h = 22.44135 m/s
d = ?
Work done = 0.5 * 22.44² * m J = 251.7768 * m J
Since the braking force remains the same .
3.619 m = ( 251.7768 m / d )
d = 69 .57 meter