Newton's three laws of motion can be used to describe the motion of the ice skating.
<h3>Newton's first law of motion</h3>
Newton's first law of motion states that an object at rest or uniform motion in a straight line will continue in that state unless it is acted upon by an external force.
- Based on this law, once the ice skating starts, it will continue endlessly unless external force stops it.
<h3>Newton's second law of motion</h3>
Newton's second law of motion states that the force applied to an object is directly proportional to the product of mass and acceleration of an object.
- Based on this law, the force applied to the ice skating is equal to the product of mass and acceleration of the ice skating.
<h3>Newton's third law of motion</h3>
This law states that action and reaction are equal and opposite.
- Based on this law, the force applied to the ice skating is equal in magnitude to the reaction of ice.
Learn more about Newton's law here: brainly.com/question/3999427
Explanation:
Load (l) = 680N
Effort (E) = 500N
Length slope (l) = 12m
Height slope (h) = 8 m
Output = load * height
680 *8 = 5.44 *103 J
The Input = effort * length = 500 *12 = 6000J
the Mechanical advantage (M.A) = load effort= 600500=1.36
the Velocity ratio (V.R) =lh=128 = 1.5
the Efficiency =M.A100%V.R= 90.6%
Infrared waves are used in heat lamps and other heat sensing devices. Infrared waves or commonly known as Infrared radiations (IR) is the type of electromagnetic radiation we encounter most in our everyday life. Heat lamps are electrical devices which emit infrared radiation.
Demographic Barriers, Occupation, Age, Obesity, <span>
Psychological Barriers</span>