The formula is
F_grav = G * m1 * m2 / r^2
G m1 and m2 are going to stay the same once chosen no matter what the distance is. The only thing that will change is the distance.
As the distance increases, the Gravitational Force will decrease. It will decrease by quite a bit.
As the distance decreases, the gravitational force will Increase.
The relationship is inverse. The moon travelling around the earth is one example. The earth travelling around the sun is another.
<span>The answer is none. According to the first law of Newton, an object stays at the same speed in the same direction if there are not forces unbalancing the object. Without friction, the car would be moving forever, unless there is another force accelerating or stopping the car.</span>
Answer: Pros and cons okay
Explanation:
Pros: Produces no polluting gases. Waste is radioactive and safe disposal is very difficult and expensive.
Does not contribute to global warming.
Cons: Waste is radioactive and safe disposal is very difficult and expensive.
Local thermal pollution from wastewater affects marine life.
Answer:
The formula for force according to Newton's second law of motion is F=ma or force for an object to move is equal to mass times acceleration.
Acceleration or average acceleration defined as change in velocity per time.
F=ma
F=1.2x10³kg*(20m/s)(1/5s)=4.8x10³ Newtons
Explanation:
fthat's not the answer then i'm sorry
Complete Question
A commuter train passes a passenger platform at a constant speed of 39.6 m/s. The train horn is sounded at its characteristic frequency of 350 Hz.
(a)
What overall change in frequency is detected by a person on the platform as the train moves from approaching to receding
(b) What wavelength is detected by a person on the platform as the train approaches?
Answer:
a

b

Explanation:
From the question we are told that
The speed of the train is 
The frequency of the train horn is 
Generally the speed of sound has a constant values of 
Now according to dopplers equation when the train(source) approaches a person on the platform(observe) then the frequency on the sound observed by the observer can be mathematically represented as

substituting values


Now according to dopplers equation when the train(source) moves away from the person on the platform(observe) then the frequency on the sound observed by the observer can be mathematically represented as

substituting values


The overall change in frequency is detected by a person on the platform as the train moves from approaching to receding is mathematically evaluated as



Generally the wavelength detected by the person as the train approaches is mathematically represented as


