Explanation:
If the intensity of the yellow light increased, meaning more photons will strike the Potassium metal per unit area. This will cause more ejection of electrons from the metal and hence, the strength of current will also increase as we know that
I = Q/t, as the charge increase , the current will also increase.
Newton's first law of motion best illustrates the principle of inertia<span />
Answer:
hello your question has some missing values attached below is the complete question with the missing values
answer :
a) 0.083 secs
b) 0.33 secs
c) 3e^-4/3
Explanation:
Given that
g = 32 ft/s^2 , spring constant ( k ) = 2 Ib/ft
initial displacement = 1 ft above equilibrium
mass = weight / g = 4/32 = 1/8
damping force = instanteous velocity hence β = 1
a<u>)Calculate the time at which the mass passes through the equilibrium position.</u>
time mass passes through equilibrium = 1/12 seconds = 0.083
<u>b) Calculate the time at which the mass attains its extreme displacement </u>
time when mass attains extreme displacement = 1/3 seconds = 0.33 secs
<u>c) What is the position of the mass at this instant</u>
position = 3e^-4/3
attached below is the detailed solution to the given problem
Answer:
B. 2 meters.
Explanation:
To rotate the capstan a certain amount of torque is required, and if each sailor applies a force
at a distance
from the center, then for two sailors the total torque will be
;
therefore, for one sailor to apply the same torque it must be that the torque
he applies must be equal to the torque that the two sailors applied:

which gives
.
and since
,

which is choice B.
The expression commonly used for potential gravitational energy is just simplification. It is actually just the first term in Taylor expansion of the real expression.
In general, the potential energy of gravitational field is defined as:

Where G is universal gravitational constant, and r is the distance between the objects centers of mass. Negative sign represents the bound state.
Since we are not given the mass of the planet we have to calculate it.

This formula can be used for any planet. It gives you the gravitational acceleration on the planet's surface. We can use it to calculate the planet's mass:

Now we can calculate the potential energy of that cannonball when it reaches its maximum height.

When we plug in the numbers we get:

The potential energy has to be equal to the kinetic energy.